
MIT/WHOI 2004-05 

Massachusetts Institute of Technology 
Woods Hole Oceanographic Institution 

^'^Us^ 

g 
Joint Program 

in Oceanography/ 
Applied Ocean Science 

and Engineering 

*NN0Gfl4 

1930 

DOCTORAL DISSERTATION 

Subduction in an Eddy-Resolving State Estimate of 
ttie Nortiieast Atlantic Ocean 

by 

Geoffrey Gebbie 

DISTRIBUTION STATEWEMT A 
Approved for Public Relea^^ 

Distribution Unlimited 

iiiT AVAlLABLi G9fT 

June 2004 

200U025 023 



MIT/WHOI 
2004-05 

Subduction in an Eddy-Resolving State Estimate of the 
Northeast Atlantic Ocean 

by 

Geoffrey Gebbie 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

and 

Woods Hole Oceanographic Institution 
Woods Hole, Massachusetts 02543 

June 2004 

DOCTORAL   DISSERTATION 

Funding was provided through Massachusetts Institute of Technology. 

Reproduction in whole or in part is permitted for any purpose of the United States Government. This thesis 
should be cited as: Geoffrey Gebbie, 2004. Subduction in an Eddy-Resolving State Estimate of the 

Northeast Atlantic Ocean. Ph.D. Thesis. MIT/WHOI, 2004-05. 

Approved for publication; distribution unlimited. 

Approved for Distribution: 

Nelson Hogg, Chair 

Department of Physical Oceanography 

.c^Jiu ^^^^.ix^Jtf^ 
Paola   Malanotte-Rizzoli 
MIT Director of Joint Program 

John W. Farrington 
WHOI Dean of Graduate Studies 



Subduction in an Eddy-Resolving State Estimate 

of the Northeast Atlantic Ocean 
by 

Geoffrey Alexander Gebbie 
B.S., University of California, Los Angeles, 1997 

Submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy 

at the 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

and the 
WOODS HOLE OCEANOGRAPHIC INSTITUTION 

June 2004 
(c) 2004 Geoffrey Alexander Gebbie. All rights reserved. 

The author hereby grants to MIT and WHOI permission to reproduce 
paper and electronic copies of this thesis in whole or in part and to 

distribute them publicly. 

Author '' ^^        ' ''"^ "'^      I^-i^'^ 

Joint Program in Oceanography -iMassagmsetts Institute of Technology/ 
W^ds Hole Oceanographic Institution 

June 2004 

Certified by W<f>^.Vi.....r^. .^\\  
Carl Wunsch 

Cecil and Ida Green Professor of Physical Oceanography 
Massachusetts Institute of Technology 

^,^^ \     \ 1 I Thesis Supervisor 

Certified by S^^^^. ^^^"Trv/^  
Patrick Heimbach 

Research Scientist — Massachusetts Institute of Technology 
^ y-\ Thesis Supervisor 

Accepted by MT>^^.CX 1^^.,-dJ^^.  
^ Joseph Pedlosky 

Chair — Joint Committee for Physical Oceanography 
Massachusetts Institute of Technology/Woods Hole Oceanographic 

Institution 





Subduction in an Eddy-Resolving State Estimate 

of the Northeast Atlantic Ocean 

by 

Geoffrey Alexander Gebbie 

Submitted to the Joint Program in Oceanography — Massachusetts Institute of 
Technology/ Woods Hole Oceanographic Institution 

on June 2004, in partial fulfillment of the 
requirements for the degree of 

Doctor of Philosophy 

Abstract 

Relatively little is known about the role of eddies in controlling subduction in the eastern 
half of the subtropical gyre. Here, a new tool to study the eastern North Atlantic Ocean 
is created by combining a regional, eddy-resolving numerical model with observations 
to produce a state estimate of the ocean circulation. The estimate is a synthesis of a 
variety of in-situ observations fi-om the Subduction Experiment, TOPEX/POSEIDON 
altimetry, and the MIT General Circulation Model. A novel aspect of this work is the 
search for an initial eddy field and eddy-scale open boundary conditions by the use of 
an adjoint model. The adjoint model for this region of the ocean is stable and yields 
useful information despite concerns about the chaotic nature of eddy-resolving models. 
The method is successful because the dynamics are only weakly nonhnear in the eastern 
region of the subtropical gyre. Therefore, no fundamental obstacle exists to constraining 
the model to both the large scale circulation and the eddy scale in this region of the 
ocean. Individual eddy trajectories can also be determined. 

The state estimate is consistent with observations, self-consistent with the equations 
of motion, and it explicitly resolves eddy-scale motions with a 1/6° grid. Therefore, sub- 
duction rates, volume budgets, and buoyancy budgets are readily diagnosed in a phys- 
ically interpretable context. Estimates of eddy subduction for the eastern subtropical 
gyre of the North Atlantic are larger than previously calculated from parameterizations 
in coarse-resolution models. Eddies contribute up to 40 m/yr of subduction locally. 
Furthermore, eddy subduction rates have typical magnitudes of 15% of the total sub- 
duction rate. To evaluate the net effect of eddies on an individual density class, volume 
budgets are diagnosed. Eddies contribute as much d&l Sv to diapycnal flux, and hence 
subduction, in the density range 25.5 < a < 26.5. Eddies have a integrated impact 
which is sizable relative to the 2.5 Sv of diapycnal flux by the mean circulation. A 
combination of Eulerian and isopycnal maps suggest that the North Equatorial Current 
and the Azores Current are the geographical centers of eddy subduction. The findings of 
this thesis imply that the inability to resolve or accurately parameterize eddy subduction 



in climate models would lead to an accumulation of error in the structure of the main 
thermocline, even in the eastern subtropical gyre, which is a region of comparatively 
weak eddy motions. 
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Chapter 1 

Introduction 

1.1    Subduct ion and the general circulation 

Throughout the subtropical regions of the world ocean, the atmosphere has a window to 

influence the structure of the main thermocline and upper ocean; the window is opened 

in the process of subduction. Subduction is the transfer of fluid from the mixed layer into 

the interior thermocline by combined vertical and horizontal flow, or by thermodynamic 

forcing. The process is typically quantified by the volume flux of subducted fluid per 

unit horizontal area, known as an entrainment velocity. In general, subduction carries 

surface properties of the ocean downward and out of direct atmospheric contact. There- 

fore, the water-mass characteristics of the mid-latitude upper ocean directly reflect the 

process of subduction. The mid-latitude upper ocean has an enormous heat capacity and 

plays an obvious role in cHmate studies (Broecker 1991; Hartmann 1994). In addition, 

subduction primarily determines the pathways of influence and information flow. For 

example, tropical-subtropical exchanges primarily take place through subducted water 

and through pathways made available by subduction (McCreary and Lu 1994; Deser and 

Blackmon 1995; Malanotte-Rizzoh et al. 2000; Lazar et al. 2002). The sensitivity of the 

composition of the subtropical ocean to atmospheric forcing raises concern because of 

global climate change; however, the historical record of subduction rates is exceedingly 

sparse. The impact of the atmosphere on a large class of water masses is not quantifiable 
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without understanding the process of subduction. 

Subduction influences more than the water-mass properties of the upper ocean; due 

to the strong coupUng of the density field and the velocity field by geostrophy, subduction 

helps set the inherent timescales of oceanic motions. The depth and slope of the main 

thermocline reflect how fast the ocean is moving. Thermocline depth fundamentally 

determines baroclinic wave properties (Pedlosky 1987), and the thermocline slope is 

related to velocity through thermal wind balance (Pond and Pickard 1983). Studies have 

hypothesized that the timescales of subduction may also set the frequency of climate 

oscillations, such as the North Atlantic Oscillation (Czaja and Erankignoul 2002) or 

the El Niiio-Southem Oscillation (ENSO) (Gu and Philander 1997). As shown here, 

subduction is an important process that influences the "clock" of both the internal 

ocean circulation and atmosphere-ocean coupling. 

1.1.1    Review of subduction 

The original theories describing subduction were based upon gross large-scale obsei-va- 

tions of the ocean (also see Price (2001) for a detailed review of subduction theory). 

Prom North Atlantic atlases of temperature and salinity (Wiist 1935; Defant 1936), 

Montgomery (1938) suggested that Ekman convergence in the near-surface ocean drove 

fluid into the deeper ocean. A volume budget calculation in a "stream-tube" confirmed 

that the rate of fluid transfer has the same order of magnitude as the Ekman pumping 

rate. Montgomery's idea of subduction by vertical velocity at the base of the mixed 

layer is the precursor to today's concept of subduction. In fact, almost all of the later 

work in ocean theory is based upon the idea that the Ekman layer can force the deeper 

geostrophic circulation. The region of negative wind stress curl, and hence Ekman con- 

vergence, generally defines the "subtropical gyre" (Pedlosky 1996). Iselin (1939) showed 

the striking similarity between a meridional section of late-winter mixed-layer properties 

and a vertical profile of temperature and salinity in the North Atlantic. He suggested 

that surface layer properties slide down density surfaces to set the properties of the 

interior ocean. As an aside, Iselin did not call upon mass lateral movement to explain 
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Depth 

Mixed layer 
thickness 

p  (March, year 2) 

»  (March, year 1) 

Figure 1-1: A depth-time schematic of Stommel's mixed-layer demon. An upper ocean 
water column with seasonally-varying mixed-layer depth {thick, dashed line) and down- 
ward Ekman pumping leads to net transfer of fluid from the seasonal to main thermo- 
cline. Effective subduction only occurs in a short time period because subducted water 
is re-entrained into the mixed layer. The last permanently-subducted water of year 1 
(thin, dashed line) leaves the mixed layer in March. Prom Williams et al. (1995). 

the connection between surface and depth, but instead remarked that "lateral turbu- 

lence" could be responsible. Forty years passed before Stommel (1979) explained why 

late-winter surface properties reflect those at depth. He showed that the typical sea- 

sonal excursion of the mixed layer is larger than the vertical displacement of water, and 

hence, only late-winter subducted water avoids entrainment back into the mixed layer 

(see Fig. 1-1). Later, a primitive equation model showed that the so-called "mixed-layer 

demon" did indeed allow only a short window for subduction to affect the main ther- 

mochne (Williams et al. 1995). All of these previous studies showed the great extent to 

which the ocean's large-scale hydrogi-aphic structure is explained by subduction. 

The relationship between the mixed layer, the main thermocline, and wind forcing 

was made explicit in the steady thermocline model of Luyten et al.   (1983).   Earlier 
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mathematical models, such as the work of Robinson and Stommel (1959) and Welander 

(1961), sought similarity solutions to a steady thermocline externally driven by an Ek- 

man layer, but did not provide much physical insight. More than twenty years later, the 

theory of the ventilated thermocline (Luyten et al. 1983) introduced a layered model 

that explained the "bowl-like" shape of the subtropical main thermocline. The venti- 

lated thermocline circulation was steady, inviscid and geostrophically balanced below 

the mixed layer, and driven by Ekman pumping at the surface. The division of the 

ocean into separate vertical layers, particularly the separation of the mixed layer and 

underlying stratum, advanced our physical understanding. The direct influence of the 

atmosphere on oceanic properties in the surface layer was termed "ventilation", which 

conjures the image of exposure to air. Below the surface layer, the "subducted" lay- 

ers conserved potential vorticity and were adiabatic. In the limit of a many-layered 

or continuous model, subduction and ventilation are identical (Cushman-Roisin 1987; 

Huang 1990). The ventilated thermocline theory predicted ocean domains with distinct 

dynamics due to differing pathways of subducted water. As foreseen by Montgomery's 

stream-tube model, a large portion of the gyre subducts water southward and downward. 

Nevertheless, subducted water does not pass through the unmoving eastern boundary 

region, termed the shadow zone. Conversely, the western boundary has an unventilated 

region with homogenized potential vorticity (Rhines and Young 1982). These theoreti- 

cal studies used potential vorticity as a framework to view the ocean circulation. The 

theory of Luyten et al. (1983) provides the basic concepts that many later studies of 

subduction rely upon. 

One key omission in ventilated thermocline theory was a realistic mixed layer with 

variable thickness and thermodynamics. When the mixed layer has spatially-varying 

thickness, horizontal velocity causes subduction. The lateral flow of fluid across a sloping 

mixed-layer base is called lateral induction (Huang 1990). Near strong currents like the 

Gulf Stream, lateral induction typically produces subduction rates of 100 m/yr or more, 

even though the average Ekman pumping rate is only 30 m/yr (Woods 1985; Marshall 

and Nurser 1991). Another shortcoming of the ventilated thermocline model was the lack 
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of mixed-layer thermodynamics. Subduction undoubtedly affects the water masses of the 

interior ocean from a kinematic point of view, but mixed-layer thermodynamic forcing is 

the primary way that new water masses are formed (Walin 1982; Speer and Tziperman 

1992; Gaxrett et al. 1995). The kinematics of subduction and the thermodynamics of 

the mixed layer were reconciled in the work of Marshall et al. (1999), where accurate 

diagnosis of mixing and entrainment in a general circulation model (GCM) showed 

that the two processes are intimately related. In summary, the addition of a more 

realistic mixed layer is necessary to quantify accurately the many processes which affect 

subduction. 

According to a recent textbook (Wunsch 1996), "the central distinguishing feature 

of oceanography as a branch of fluid dynamics is the extreme difficulty of obtaining 

observations." This is still true. However, with the advent of satellite measurements 

and the continuation of intensive field programs, oceanographers now have greater ca- 

pability to observe the ocean than ever before. The unprecedented supply of new data 

shows clearly that the ocean moves on all space and time scales and must be studied as 

such. With subduction, recent work has begun to consider the net impact of small-scale 

motions. The role of "eddies", small-scale motions with a characteristic lengthscale of 

100 - 400/cm, is especially murky. Eddies act to diffuse tracers as well as providing an 

effective advection by a "bolus velocity". Marshall (1997) showed that the bolus veloc- 

ity (Gent et al. 1995) is responsible for eddy-induced subduction (Figure 1-2). Hence, 

regions with large bolus velocities have large subduction rates due to eddies. The nu- 

merical model study of Hazeleger and Drijfhout (2000) showed intense eddy subduction 

near the Gulf Stream, a region with large bolus velocities. Furthermore, baroclinic insta- 

bility associated with oceanic fronts provided a mechanism for subduction (Spall 1995; 

Follows and Marshall 1996). In the face of high-resolution observations, large-scale, 

steady theories may be in-elevant. Will these theories stand up to quantitative analysis? 

The inherently turbulent character of the observed ocean forces the revision of recent 

theories of subduction. 
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Figure 1-2: Schematic of eddy-driven subduction. Time-variable motions near a density 
front, marked by tightly packed isopycnals thin lines, can transport fluid below the 
mixed-layer base, marked by the boundary between high and low potential vorticity 
{bold line). Following Walin (1982). Figure torn J. Marshall (pers. comm.). 
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1.1.2    The Subduction Experiment 

Goals of the field study 

The overall goal of the Subduction Experiment was to understand the sequence of events 

leading to subduction, and the subsequent movement and transformation of subducted 

water. Subduction is primailly due to large-scale forcing by the atmosphere, especially 

by the wind. The accm'ate measurement of the large-scale atmospheric forcing was 

therefore a necessary goal of the experiment. From a pm'ely kinematic point of view, 

the Subduction Experiment also sought the large scale mean surface flow and its con- 

vergence, because this forces water downward. Connections between the kinematic and 

thermodynamic viewpoints were specifically sought by the experiment; in other words, 

the basic dynamic balances in the ocean were unknown. Finally, the degree of non- 

locality in the process of subduction was to be determined as well. Furthermore, the 

Subduction Experiment was part of the much larger World Ocean Circulation Experi- 

ment (WOCE), and the goals stated here are but a subset of the overall WOCE goals 

(Siedler et al. 2001). 

To achieve these goals, the eastern subtropical North Atlantic Ocean was chosen as 

the site of the Subduction Experiment. The region has a large-scale pattern of negative 

wind stress cm-1 (Stommel 1979; Moyer and Weller 1995) and observations have shown 

that subduction occurs there (Jenkins 1987). Also, the eddy kinetic energy is low in 

relation to western boundary currents or the tropics (Stanmier 1997). The experiment 

comprised three separate field deployments between June, 1991, and June, 1993. An 

array of five moorings observed both oceanic and meteorological fields (Brink et al. 1995). 

They were spaced in a "X" pattern over with typical separation of 1000 kilometers in 

order to quantify largescale changes in atmospheric variables. Mooring locations are 

marked in Figure 1-3. The meteorological component of moorings measured short and 

longwave radiation, humidity, wind speed, temperature, and rainfall. The large scale 

Bermuda-Azores high dominated the atmospheric variability in the region (Moyer and 

Weller 1995). Below the smiace, the moorings measiued subsurface velocities (typically 
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Subduction Experiment Data 

18°N 

40%/ 

30°N 

24°N 

32°W 24"W 16°W 

Figure 1-3: The Subduction Experiment was an intensive field experiment designed to 
study the subduction of fluid from the mixed layer into the main thermocline. This 
study uses 5 moorings (marked by "X") with temperature, velocity, and meteorological 
observations. TOPEX/Poseidon altimetry (marked by bold, sohd tracks) is also used 
here. The thin solid lines ai'e depth contours with an interval of 1000 m. 

with Vector Measuring Current Meters and with Acoustic Doppler Current Profilers) 

and temperatures to a depth of 1500 meters. All of the moorings were deployed south 

and west of the Azores Current in order to remain in a low eddy kinetic energy region 

of the ocean, presumably because the original experiment planners believed that high 

values of eddy energy would obscure their- findings. This thesis takes the viewpoint that 

the eddy energy is an intrinsic part of the process, and that it can not be ignored without 

careful analysis. As can be seen above, the deployment of the five moorings had specific 

science objectives hi mind, and this study reviews whether the specific objectives were 

met. 
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State Estimate Obs. Withheld Obs. Previously used Obs. 
Mooring Temperature 
Mooring Velocity 
TOPEX/POSEIDON altimetry 

WOCE hydrography- 
Mooring heat fluxes 

Bobber, SOFAR, and ALACE floats 
Sea-Soar profiles 
NATRE, lYitium-Helium 

Table 1.1: Summary of the observations. The state estimate observations were used 
explicitly to constrain the model. The center column indicates observations that were 
later used as axi independent check on the state estimate. Previous studies have used the 
assortment of observations in the third column, but they were not directly used here. 

In addition to the mooring data, other quantities were measured. The moorings were 

refurbished every 8 months, so there were many hydrographic transects during transit. 

Over 800 standard CTD stations and thirteen surveys with a SeaSoax towed profiler were 

taken (Pallant et al. 1995; Joyce et al. 1998). The near-surface flow field was measured 

with the drifters of P. Niiler and J. Paduan, and deeper measurements by twenty-eight 

SOFAR (Sound Fixing and Ranging) and bobber floats characterized the flow in the 

region (Sundermeyer and Price 1998). Bobber floats rested at a preprogrammed density 

level, and profiled in a pre-specified density band every other day. Eleven ALACE (Au- 

tonomous LAgrangian Circulation Explorer) fioats of R. Davis were also in the region. 

Approximately eighty other fioats of A. Bower, P. Richardson, and W. Zenk specifically 

studied the Mediterranean Outfiow. Dye and dye-like studies were also carried out si- 

multaneously. The North Atlantic Tracer Release Experiment (NATRE) occurred very 

near the central Subduction Experiment mooring during the same time period (Ledwell 

et al. 1993). Tritium-Helium observations of W. Jenkins also characterize rates of sub- 

duction and dispersion of water masses. Last but not least, the TOPEX/POSEIDON 

sea surface height observations began in October, 1992, and overlap half of the Subduc- 

tion Experiment. As a whole, the Subduction Experiment was an intensive field study 

with a wide variety of instrumentation. 
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Results from the Subduction Experiment 

Close comparison of the Subduction Experiment and ocean theory gave rise to startling 

differences. Theories of ventilation and subduction have focused on the large-scale and 

steady ocean (Luyten et al. 1983; Woods 1985). In contrast, mesoscale eddy energy was 

a ubiquitous feature of all observations and it was not obvious that it can be ignored. 

Joyce et al. (1998) showed that SeaSoar profiles of subducted water have mesoscale vari- 

ability that is not damped by the process of subduction. Mixing after initial formation 

was crucial to the evolving water mass properties of subducted fluid. Prom these obser- 

vations, Joyce et al. (1998) made objective maps of the mesoscale eddy field on a scale 

of 100 kilometers. Sundermeyer et al. (1998) used the ALACE floats of the Subduction 

Experiment to calculate particle dispersion rates and strain rates of mesoscale eddy field. 

The results of the Tracer Release Experiment (Ledwell et al. 1993) confirmed the similar 

diffusive effect of the small scale ocean circulation. Other differences to ocean theory 

came firom geographic complications. HeUum-tritium observations (Robbins et al. 2000) 

showed that the Azores Current acted as a barrier to the net mass flux of subduction 

(Figure 1-4). According to ventilated thermocline theory, this would create a pool of 

homogenized potential vorticity (PV) behind the barrier (Rhines and Young 1982), but 

such a PV distribution is not observed. Robbins et al. (2000) appealed to the diffusive 

nature of subduction in this case, which is reminiscent of the net effect of the mesoscale 

eddy field. Weller (2003) and Weller et al. (2004) further remark that "mean advection 

[alone] cannot explain how water is carried into the mixed layer ... and eddy transport 

processes should be considered." Perhaps these differences to theory should not be so 

surprising; the observational view of the ocean as fundamentally turbulent sometimes 

opposes theoretical tradition. 

Moyer and Weller (1995) focused on the impact of the moored meteorological mea- 

surements. They showed the inability of climatological datasets of atmospheric forcing 

to adequately represent the forcing at the mooring sites. Large errors in heat flux and 

oversmoothing were deficiencies in the climatologies. Systematic biases reach 50% of 

the total signal. Moyer and Weller (1995) warned that mean subduction rates or mean 
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Figure 1-4: Schematic of the pathways of ventilation on three isopycnal surfaces. Each 
surface is defined by its ae value. Montgomery streamfunction {thin, black lines), the 
mean circulation {yellow arrows), and the winter outcrop line {magenta dashed line) 
are plotted for each surface. Different mechanisms must explain the variety of observed 
subduction paths. Prom Robbins et al. (1998). 
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Eknian pumping rates calculated from these climatological datasets (i.e., Woods 1985; 

Marshall et al. 1993) may not be representative. For example, Marshall et al. (1993) 

calculate a mean subduction rate of 80 — 100 m/yr in the eastern subtropical gyre, al- 

though measurements for the Subduction Experiment time period were much lower. In 

summary, ocean modelers either need improved forcing fields, or they should consider 

the model output to be very uncertain. 

A hierarchy of models has been used to simulate the dynamics of the Subduction 

Experiment region. This was (and remains) a necessary avenue of research because 

the spatial and temporal resolution of the observations was not high enough to diagnose 

accurate dynamical balances. The hierarchy of models ranged between the "pipe" model 

of Robbins et al. (2000), the two-layer quasi-geostrophic model of Sundermeyer and 

Price (1998), and the primitive equation models of Spall (1990) and Spall et al. (2000). 

In particular. Spall et al. (2000) attempted to quantify subduction rates, dynamical 

balances, and the role of eddies by using a global coai-se resolution Climate System Model 

(CSM) of the National Center for Atmospheric Research (NCAR). Typical subduction 

rates were over 100 m/yr in the wall of the North Atlantic Current and 40 m/yr away 

from that region, with a 5 — 10% contribution from eddy motions (Figure 1-5). This 

was the first attempt to make a region-wide quantitative analysis of the Subduction 

Experiment dynamics. The study used an eddy-parameterization scheme to describe the 

role of eddies in subduction. A qualitative comparison of the model with observations 

was also made. This thesis aims to extend and improve the line of research started by 

Spall et al. (2000). 

1.1.3    Unresolved questions 

The original goals of the WOCE experiment have not been fully achieved by the Subduc- 

tion Experiment. According to the WOCE AIMS document (1997), a major goal was 

the quantification of transport estimates, water-mass formation rates, and a description 

of variability. Although air-sea fluxes are known very well at the moorings, the uncer- 

tainty of climatologies away from those sites makes the atmospheric forcing very poorly 

22 



so- 

lo 

-60 

(b) 
_J L 

-40 

Kg 

-20 

30 - 

10- 
.<.'^^^ 

T 
-60 -40 -20 

Figure 1-5: Left panel: Thermodynamic estimate of eddy-driven subduction [m/yr] by 
the diapycnal bolus transport of heat in the mixed layer. Right panel: Estimate of 
subduction by the mean flow [m/yr]. Both calculations were from a coarse-resolution 
numerical model with an eddy-parameterization scheme. Prom Spall et al. (2000). 

known in general. Even meteorological re-analyses are highly uncertain over the open 

ocean. An improved estimate of the true atmospheric forcing everywhere is a prereq- 

uisite to progress. Mean subduction rates and subduction rates from coarse resolution 

models have been calculated, but these values do not have strong observational support 

of the Subduction Experiment. A description of variability does exist, although its rela- 

tion to the large-scale circulation is unknown. The need for basic quantification of the 

Subduction Experiment parameters and variables still exists. 

Another major goal of WOCE is the understanding of dynamical balances of the 

ocean. Although the impact of the small-scale variability of the ocean has been noted 

in all observations, the role of these motions in dynamical balances has only been quan- 

tified recently. No consensus exists regarding the impact of eddies on the net product 

of subduction, for example. With respect to dynamical balances and water mass trans- 

formation, are eddies relevant in the eastern subtropical gyre? 

Although previous research in the Subduction Experiment has achieved much with 

individual data forms and models, only the recent, independent study of Weller et 

al.   (2004) has attempted to compai-e and collate the large collection of the available 
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information. A more trustworthj^ and self-consistent picture of the ocean physics arises 

from an integration of the many forms of observations and a model. In contrast to 

Weller et al. (2004), this thesis aims to be a quantitative synthesis and an extension 

of the previous research through rigorous mathematical methods. The quantification 

of the ocean dynamics over the entire domain of the Subduction Experiment is the 

overarching goal. This thesis has abready introduced the observations available, but to 

properly carry out a synthesis, a numerical model is also essential. 

1.2    Novel aspects of the thesis 

1.2.1    Approach: synthesis of observations 

To create a model-observation synthesis, a realistic model of the Subduction Experiment 

region is necessary. As carried out in this thesis, this endeavor has side benefits, although 

many are technical. The formulation of open boundary conditions is crucial for any 

regional ocean model. No standard method for open boundaries has yet been adopted 

by oceanographers. Ocean models also have many systematic errors such as improper 

mixed-layer parameterizations. Deficiencies in ocean models, or discrepancies between 

models and observations, lead to improvement in ocean models themselves. In short, 

the attempt to realistically simulate the ocean is an important one in itself, and has 

been the subject of entire books (e.g., O'Brien 1986; Haidvogel and Beckmann 1999). 

The methodology of combining observations with models has fundamental impor- 

tance in its own right. These methods are important for a more general science and 

engineering audience, such as the fields of computer science, economics, biology, and 

any other field with mathematical models. Some of the fijst methods to combine mod- 

els and observations in geophysics were forms of objective mapping used in meteorology 

(e.g., Gilcrest and Cressman 1954; Sasaki 1970). In oceanography, large datasets are 

now available, and the synthesis of large and disparate forms of information is logically 

handled by combining all the observations with a model. This leads to a state estimate 

of the ocean (to be defined in more detail in Section 2.1) which is our best estimate of 
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what the ocean actually does. Relatively recently, oceanographers have used the Kalman 

filter (e.g., Fukumori et al. 1993; Miller et al. 1994) and the method of Lagrange mul- 

tipliers (e.g., Thacker and Long 1988; Tziperman and Thacker 1989; Sheinbaum and 

Anderson 1990; Marotzke and Wunsch 1993) to combine models and data. This thesis 

presents novel research with the latter technique, the method of Lagrange multipliers, 

otherwise known as the adjoint method (see Section 3.2). The effects of nonlinearity in 

an extremely large dimensional space are explored here. In the future, the methods of 

this thesis and related methods are expected to be in widespread use in oceanography 

and the wider scientific community. 

1.2.2    Eddy-resolving model with open boundaries 

The model used in the present study is the Massachusetts Institute of Technology Ocean 

General Chculation Model (MIT GCM) with the complementary state estimation codes 

of the ECCO (Estimating the Circulation and Climate of the Ocean) Consortium. It is 

a z-coordinate model which employs the incompressible Navier-Stokes equations under 

the Boussinesq approximation and hydrostatic balance (Marshall et al. 1997a; Marshall 

et al. 1997b). The dynamical core of the model is discussed in more detail in Appendix 

A. The intent is to realistically simulate the Subduction Experiment region for one 

year: June, 1992, to June, 1993. Also, the model is designed to explicitly simulate the 

mesoscale eddy field. The Rossby radius of deformation is between 25 - 45 km in this 

region, and the resolution we have chosen for the model is approximately 15 km, or 1/6°. 

To completely resolve the eddy field, much higher resolution, e.g. 1/12° or even 1/20°, 

is probably needed. At such high resolution, it is impractical computationally to run a 

global model, or even a complete North Atlantic model. Consequently, the model domain 

contains most of the eastern subtropical gyre of the North Atlantic (see Figure 1-6). At 

1/6°, eddy kinetic energy of the model is typically 50 - 75% of TOPEX/POSEIDON 

observations. Although the domain is small, it was chosen such that all of the Subduction 

Experiment is within the interior and well away from the boundaries. Because this is 

a regional model, open boundaries have been implemented. The north, south and west 
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Horizontal Resolution 
Vertical Resolution 
Grid Points 

l/6°xl/6° ^ (14.2 - 18.2) km x 18.5 km 
10-500 m 
192 X 168 X 23 vertical levels 

Time Step 
Wind Stress Period 
Heat/Freshwater Flux Period 

900 s = 15 min. 
43200 s = 0.5 days 
86400 s = 1.0 day 

Horizontal Viscosity/Diffusivity 
(biharmonic) 

1/1 = K.l = 0 m^/s 
pf^ = K\ = 2x10" m'^/s 

Vertical Viscosity 
Vertical Diffusivity 

u^ = 1x10-^ mVs 
K, = 1x10-5 ^2/g 

Table 1.2: Model parameters 

boundaries are open, but the Mediterranean Sea is only opened in special experiments 

(see subsection "open boundaries" below). 

This regional model is nested in the global, 2° state estimate of the ECCO Consor- 

tium (Stammer et al. 2002). This is a great advantage because all the time-dependent 

boundary values of the regional model are taken from the global estimate. For exam- 

ple, the initial temperature and salinity here are taken from the global state estimate. 

Preliminary model runs use the National Center for Environmental Prediction (NCEP) 

Reanalysis daily sensible and latent heat fluxes and twice-daily surface windstresses. 

Some modelers claim that the European Centre for Medium-Range Weather Forecasts 

(ECMWF) surface forcing is superior in this region, however (L. Yu, personal communi- 

cation). The atmospheric forcing fields are improved and estimated here, so a reasonable 

first guess suffices for the first model runs. In conclusion, the MIT GCM is a state-of- 

the-art numerical model which makes it possible to simulate realistically the Subduction 

Experiment region. 
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Temp, and Velocity Snapshot, May 26,1993, 310 meters 

36"N 

30°N 

24°N 

18°N 

40°W 32°W 24°W 16°W 

Figm'e 1-6: Snapshot of the 1/6° model temperature and velocity fields at 310 meters 
depth. Temperature has 1° contour mtervals from 15°C to 21°C. The full model domain 
and thi'ee open boundaries are shown. This snapshot represents our first guess at the 
true ocean state on June 1, 1993. The model was started one yeai' earlier, June 1, 1992. 
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K-proflle parameterization 

Previous simulations with GCM's have shown serious systematic errors in the mixed 

layer. Summertime mixed layers were too shallow and the sea surface temperature 

(SST) became unrealistically warm in the seasonal cycle. For this reason, the K-profile- 

pai-ameterization (KPP) scheme is used here (Lai'ge et al. 1994). The scheme improves 

the model by parameterizing wind deepening of the boundary layer, by enhancing shear 

instability in the upper ocean, and by reducing the dependence on surface restoring 

conditions. The KPP model calculates increased diffusivities for underrepresented and 

unresolved ocean processes through the similarity theory of turbulence (Tennekes 1973). 

Another improvement of this boundary-layer model is its nonlocal behavior; heat, salt, 

and momentum can be fluxed through vertically homogeneous regions. Turbulent fluxes 

are therefore independent of local gi-adients, which is frequently the case in the mixed 

layer. As a result, momentum input at the surface can cause the boundary layer to pen- 

etrate the stable thermocline by wind-stirring. The improved model physics with KPP 

reduces the dependence on surface restoring conditions (Sausen et al. 1988). Surface 

restoring conditions (sometimes called flux corrections, especially with coupled models) 

are relaxation terms for SST to prevent systematic bias. These terms force the model to 

suppress eddy activity because of the constraint to a large scale SST fleld. The overall 

model performance is much improved in comparison with observations when the KPP 

model is added (see Chapter 3). 

The KPP model has several weaknesses. In general, mixed-layer depths are still 

shallower than observed. The wind-stirring parameterization in KPP reduces the dis- 

crepancy but does not completely elimhiate it. In coastal regions, the mixed-layer model 

has numerical problems when the mixed layer reaches the sea floor. There, the model 

behavior is noisy and nondifferentiable (see Section 3.3.3 for a definition and discus- 

sion), and nonphysical bottom fluxes are present. Continental shelves were removed in 

this model to eliminate the problem as they are not the focus of the research. A major 

practical problem with KPP is that the scheme analyzes vertical columns independently. 

Computational noise frequently develops in the horizontal direction. An ad-hoc solution, 
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used here, is the introduction of a horizontal smoothing function. The model results 

are not highly dependent on this smoothing in the subtropical gyre. In conclusion, the 

KPP model represents the best boundary-layer model at present, but improvement is 

possible. 

Open boundaries 

The implementation of open boundaries has not traditionally been a standard feature of 

GCMs. Here, density and velocities from the global state estimate (Stammer et al. 2002) 

are used to constrain the boundary through a sponge layer. The boundary conditions 

are treated as adjustable parameters, so an estimate of improved boundary velocities 

emerges in the synthesis (see Chapter 3). The Mediterranean Sea outflow is closed in 

the early experiments of this thesis, and is open later. The open boundary conditions 

vary in time on a monthly basis. Also, they have been calculated to exactly balance the 

volume flux into the domain on a monthly basis. With our present level of knowledge, 

exact volume conservation is a reasonable null hypothesis over these timescales. This 

assumption is checked later in the thesis (see Section 2.4.2). The design and implemen- 

tation of numerical code for control and estimation (inverse aspects) of open boundary 

conditions is potentially a major contribution of this thesis, and is discussed later (see 

Section 2.4). The formulation of the open boundaries of the forward model alone is 

discussed in the next paragraph. 

Open boundaries which require the prescription of the full oceanic state for forward 

integration are overdetermined and formally ill-posed (Orlanski 1976; Ohger and Sund- 

strom 1978). The prescribed open boundary state usually contradicts the dynamical 

equations that describe the interior circulation. At every timestep, two pieces of infor- 

mation exist for the new open boundary state: the update from the equations of motion 

and the prescribed state for the next timestep. This problem is formally overdetermined 

because too many boundary conditions are supplied (Bennett 2002). The correct num- 

ber of boundary conditions for a primitive equation model depends on the interior flow 

characteristics and the vertical structure of waves (Oliger and Sundstrom 1978). This 
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is much more complicated than the case for a quasigeostrophic or shallow-water model 

where the correct number of open boundary conditions is more easily calculated. In 

summary, the addition of open boundaries to a primitive equation model is ill-posed 

because the solution of an overdetermined problem usually does not exist. 

There are two ways to resolve the ill-posedness of the open boundary problem with a 

general circulation forward model: impose the correct number of boundary conditions in 

the first place or discard extra information. Radiation boundary conditions, like those of 

Orlanski (1976) and Marchesiello et al. (2001), identify passive and active boundaries, 

then modify the passive open boundary values. In this process, they attempt to apply 

the correct number of boundary conditions. On the other hand, a sponge layer, as used 

in this thesis, keeps the transition between the boundary and interior smooth by adding 

a relaxation term to the dynamics. In the forward numerical model, the right hand 

side of the temperature equation (Equation A.4) includes advection and diffusion terms, 

symbolically written Ge, and an extra term due to the sponge layer: 

^9{x, z,t) = Geix, z,t) + -—^ Mx,z,t)-e{xob,z,t)] (1.1) 
JJt T\^X      Xoh) 

where r is a relaxation timescale that depends on distance from the boundary, {x - Xob}- 

At the boundary, the timescale is formally zero; there 9{xob, z) is prescribed. The sponge 

layer width is 1°, in which the boundary solution smoothly transitions to the interior. 

Salinity and horizontal momentum axe also relaxed to prescribed values in the 1° layer. 

The sponge layer is an ad-hoc and nonphysical solution; therefore, a state estimate 

which is highly sensitive to the sponge layer formulation should be rejected. The model- 

observation synthesis of Chapter 3 seeks adjusted open boundary conditions which are 

dynamically consistent with the interior solution. Bennett (2002) postulated that the 

treatment of the open boundaries as an inverse problem renders the problem well-posed. 

Nevertheless, finding well-behaved boundarj' conditions has not previously been done 

for an eddy-resolving, primitive equation model. 
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Quantity- Dimension/Size/Length 
State Vector 
Control Vector 
Observations 
Model Input 
Model Output 

3.14 X W elements 
5.49 X 10^ elements 
1.28 X 10''' observations 
7.98 X 10''' forcing elements 
1.09 X 10" estimated elements 

Parallel Processors 
Computational Time 
Search Iterations 
Total Computer Time 

24-48 processors 
400 cpu hours/iteration with IBM 1.3 GHz Power4 processors 
Ri 120 iterations 
^ 50,000 hours (5.7 years) 

Numerical Code 569 subroutines 
322,895 lines of forward code 
22,507 hues of adjoint code 

Table 1.3: Dimension of the problem 

1.2.3    Size of the problem 

The integi'ation of a realistic eddy-resolving model is expensive and has many uncertain 

parameters. The sheer size of the problem presents a challenge. First, the high resolu- 

tion of the model gives a very large number of grid points and a great computational 

cost. In fact, there are over three miUion prognostic variables for the model (identified 

as the state vector in Table 1.3). Second, the search for a model solution which fits the 

observations leads one to vary the uncertain boundary conditions^ The important, un- 

certain boundary conditions are chosen to be control parameters, and are further defined 

in Section 2.1. Here, there are over five million control parameters and consequently 

the search occurs in a five-million-dimensional space. The thesis tests the assumption 

that the high-dimensionality of the problem does not alter its fundamental character. 

Of course, the computational cost is high and present-day limits of computing power 

are approached. 

^Boundary conditions include initial conditions, open boundary conditions, and surface forcing. 
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Computational tools 

A computationally-intensive model needs massively parallel supercomputers to run the 

code. The MIT GCM has a "WRAPPER" environment which easily allows this to 

be implemented. In this thesis, the code is parallehzed using a domain decomposition 

approach where subdomains (also called "tiles") of the model are sent to separate pro- 

cessors (see Foster (1995) for an excellent introduction to parallel computing). The 

Umiting factor of the computational scalability of the GCM is communication between 

processors. When the subdomain size shrinks below thirty by thirty grid points, in- 

creased communication time offsets the hicreased computer processing power. With the 

number of grid points, twenty-four processors are the optimal number here. At var- 

ious times during the thesis, the model was run on the eighth^ and eleventh^ largest 

supercomputers in the world. The practical implementation of the numerical model 

would not be possible without the parallelized code and the access to massively parallel 

supercomputers. 

Another technical aside is that the MIT GCM numerical code has been automatically 

differentiated with the TAP (Tranformations of Algorithms in Fortran) tool of Giering 

and Kaminski (1998). An automatic differentiation tool allows for the adjoint model 

code to be regenerated whenever there are necessary changes in the forward code. The 

adjoint model provides vital information for fitting the model to observations, and is 

fully introduced in Section 3.2. The forward model contains over 500,000 lines of code, 

so hand-writing and rewriting the adjoint code would take approximately one to two 

years of dedicated work (Yu and Malanotte-Rizzoli (1996) took two years to hand-code 

the adjoint of the MOM ocean model). Therefore, the compatibility of this particular 

model with the adjoint generator makes the entire thesis feasible. 

^The IBM SP3 "blue horizon" of the San Diego Supercomputer Center has 1,152 375 MHz processors, 
the 8th largest unclassified supercomputer in the world upon its release in 2000. Inevitably, it no longer 
ranks in the top 50 after a mere two years. Source: www.top500.org. 

^The IBM SP4 "marcellus" of the Naval Oceanographic Office Major Shared Research Center, Sten- 
nis Space Center, MS, is the 11th largest supercomputer in the world (2003) with a peak performance 
of 7.5 Teraflops. 
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1.3    Synopsis of the thesis 

To review, Chapter 1 shows the widespread impact of subduction on the water mass 

properties of the main thermocline. Past studies of subduction have focused on the large 

scale and steady or seasonally-varying ocean circulation. Recent papers have begun to 

consider the impact of eddy-driven subduction and have shown that eddies are important 

in certain regions of the ocean. In the subtropical gyre, mesoscale eddy energy is a 

ubiquitous feature of all observations and it is not obvious that it can be ignored. The 

observations of the Subduction Experiment do not adequately resolve the eddy-scale 

motions of interest. A numerical model, the MIT GCM, statistically combined with 

the observations, produces a estimate of the ocean circulation at 1/6°. Using this state 

estimate, this thesis aims to understand subduction in a reahstic, turbulent ocean. 

Chapter 2 shows that the synthesis of a model and observations can be formulated as 

a giant least-squares problem. To advance the scientific agenda, a best estimate of the 

ocean circulation is sought from the combination of the Subduction Experiment observa- 

tions and an eddy-resolving, regional general circulation model for June, 1992, to June, 

1993. Measurements of temperature and velocity at five moorings, TOPEX/Poseidon 

satellite altimetry, Levitus climatologies and Reynolds sea surface temperatures are used 

as constraints on the model. The model trajectory is controlled by adjusting the initial 

conditions, boundary conditions, wind stresses, heat and freshwater flux. The goal is to 

vary the control parameters to find a model trajectory that fits the observations within 

their uncertainty. 

Chapter 3 finds a model solution which fits both the large-scale and small-scale 

observational signal. The method of Lagrange multiphers [otherwise known as the ad- 

joint method (Wunsch 1996)] is a logical way to combine oceanic datasets into one 

dynamically-consistent estimate. For field campaigns where all the data has been com- 

piled and collected, the adjoint method uses all the data at once and the method enables 

estimation firom data collected in future time. The method is also computationally fea- 

sible because it does not require a extraordinarily lai'ge number of perturbed model 

simulations, nor does it need to compute large error covariance matrices.   Practical 
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implementation and solution of the minimization problem is detailed in this chapter. 

In particular, the nonHnearity of the model constraint is shown to be a fundamental 

factor in the optimization problem. Despite concerns of the published literature (Lea 

et al. 2000; Kohl and Willebrand 2002), trajectories of the eddy-resolving Subduction 

Experiment model diverge quasi-lineaxly in time and the adjoint model is stable. Con- 

sequently, the adjoint-computed gradients give adjusted initial conditions which do lead 

to an improved model trajectory. After fifty iterations of the forward-adjoint model, the 

method decreases the data-model misfit nearly to the level of the expected error in the 

observations. For this study, there appears to be no fundamental obstacle to adjusting 

the model trajectory into complete consistency with the observations and their prior 

estimated error. The adjoint method is successful because the forward model itself is 

only weaJily nonlinear in the region. The model is not extremely sensitive to the initial 

conditions, and the problems associated with chaotic dynamics do not interfere. The 

result is a dsmamically-consistent, three-dimensional, time-varying, nested, high reso- 

lution estimate of the ocean circulation. The Subduction Experiment model suggests 

a wide potential for the adjoint method in oceanography, and this is a major result in 

itself 

Chapter 4 illuminates the role of eddies in subduction. This chapter uses the state 

estimate to diagnose quantities of interest which can not be measured directly. A pre- 

liminary step is to compare subduction in the state estimate to classical theory. As 

expected, the seasonal cycle and the mixed-layer demon influence the properties of sub- 

ducted water, but the pathways of subduction do not resemble those of an idealized 

ocean model. The pattern of annual subduction rates has a small-scale signature and 

suggests a significant contribution of eddies to subduction. The goal of this thesis is to 

quantify the relative importance of eddy-driven subduction to the total subduction. In 

the state estimate, eddy-induced volume fluxes across the base of the mixed layer are 

15% of the total subduction, and consequently are locally important. When subduction 

is calculated in density coordinates, eddy-subduction is seen to be important in the 

density range of 25.5 < a < 26.5, which encompasses both the Azores Current and the 
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North Equatorial Current. Prom these findings, the eddy scale motions are an additional 

and sizable source of subducted water neax fronts in the eastern North Atlantic Ocean. 

Chapter 5 summarizes the findings of the thesis. The novel scientific results of this 

thesis, as well as advances in the methodology, are reviewed. Finally, the Umitations of 

the thesis are discussed, with speculation for future research. 
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Chapter 2 

The Model-Observation 

Least-Squares Problem 

2.1    Overview of the concept 

To shed new light on subduction, this thesis creates a new estimate of the ocean circula- 

tion during the Subduction Experiment. The goal is to estimate the ocean circulation as 

realistically as possible. In a world of imperfect models and sparse, noisy observations, 

how can one determine the "goodness" of an estimate? A set of criteria, sometimes 

called the performance in control theory (i.e., Dahleh (1999)), are determined by the 

observations and characteristics of the ocean. Mathematically, the performance criteria 

are written as a giant least-squares minimization problem. This chapter defines the 

specific least-squares problem at hand: the search for an eddy-resolving regional model 

trajectory that fits the Subduction Experiment observations within their uncertainty. 

Definitions 

Before proceeding, it is instructive to be more specific about our stated goals. We wish 

to estimate the circulation of the ocean as described by the three-dimensional, time- 

varying density, velocity, and surface elevation fields. Erom the temperature, salinity, 

and horizontal velocity fields, all physical quantities of interest are computable (see 
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Appendix A). Hence, temperature, salinity, and horizontal velocity completely describe 

the previous history of the ocean circulation and are called the state^. The useful 

combination of model and observations is called a state estimate as we are explicitly 

interested in the circulation (i.e., the state) as it evolves. State estimation problems are 

frequently solved by methods that have been developed in the field of control theory, the 

study and search for forces or controls that drive an observed system in a desired way. 

An ocean model is driven by forces which can be considered controls, like the relatively 

unknown atmospheric fields over the open ocean. Of course, the actual ocean is not 

controllable due to engineering limits, but instead one wishes to control an ocean model 

to behave in a way which is consistent with observations. Much like control theory, 

the controls themselves are considered important quantities to be estimated^. Hence, 

observations contain knowledge of the true boundary conditions, not just the interior 

ocean where the observations were taken. 

The methodology used here does not solely come from control theory. Many of 

the methods are also classified as inverse methods, which are methods used to solve 

problems that are not posed in the usual mathematical way (Tarantola 1987; Wunsch 

1996). Inverse methods are unique in that they consider uncertainty to be an essential 

part of the solution. This problem is also classified as a part of optimization theory, which 

has a large set of available tools, although many were developed for small-dimensional 

systems (Luenberger 1984; Gill et al. 1986). Optimization includes both maximization 

and minimization problems, such as the least-squares problem here. 

When dealing with combinations of models and observations, many atmospheric sci- 

entists and oceanographers prefer to use the term data assimilation. Some researchers 

denote both state estimation and forecasting as parts of the wider field of data as- 

similation. Unfortunately, data assimilation now has the connotation of the particular 

methods developed for the atmosphere and has little meaning to the entire scientific com- 

munity. Therefore in an effort to use a terminology that is meaningful to those outside 

^For the numerical model, the number of variables needed for a restart at any time is larger than 
the state described here. 

^Estimated controls contain both an estimate of the true boundary conditions as well as model error. 
Separating these two contributions is not usually trivial. 
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of atmospheric and oceanic physics, the methodology here is termed state estimation. 

Performance criteria 

Observations undoubtedly provide information on the state of the circulation. Neverthe- 

less, measurements axe imperfect. They contain some error due to the instrument which 

should be accounted for. Also, observations are irregularly distributed in space and time 

and typically miss some features of interest. This is true in the Subduction Experiment, 

where five moorings can not be expected to give much spatial coverage despite their 

decent temporal coverage. The diagnosis of budgets, such as subduction rates, are espe- 

cially difficult with mooring observations. Although observations are sometimes seen as 

the only source of "sea-truth", they alone are not adequate to make an estimate which 

fulfills our criteria. 

Like observations, the laws of physics themselves provide meaningful information 

which can be used to improve a state estimate. However, the laws of physics, embodied 

here as a general circulation model (GCM), are uncertain as well. Model trajectories are 

uncertain because of both poorly-known oceanic forcing fields and inaccurate dynamics. 

On the positive side, a model provides information with high-resolution, only limited 

by computer power. The well-distributed coverage of model output makes possible the 

computation of sensible budgets. A complete state estimate must use the laws of physics 

because of the useful information they provide. 

At this point, an estimate that best uses all available information necessarily contains 

both observations and a model. A further criterion is that the estimate provides a 

statistical blend of both sources that depends on their relative uncertainty. In cases 

where the error in both sources is assumed to be jointly normal, the proper statistical 

blend can be proved to be the maximum likehhood solution, the best estimate of truth 

(Van Trees 1968). A statistically-rigorous combination will also allow for the careful 

assessment of the uncertainty of the final solution, a desirable quantity. The result of 

our combination of data and model could be called dynamic interpolation; a dynamic 

model interpolates and fills the missing information between given observational points. 
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The estimate need not go through the exact observational values, however. Because of 

the observations' uncertainty, this would not be the best solution anyway. Consequently, 

a model can be used to distinguish between signal and noise in observations. As can be 

seen, there are many reasons to form an estimate from both model and observations. 

When does a model serve as an adequate dynamic interpolator? Cross-validation^ 

is the comparison of an estimate to withheld data, and it evaluates the model's ability 

to predict the ocean circulation in the absence of observations. The MIT GCM shows 

promise as a dynamic interpolator for two reasons. One, the first-guess model trajectory 

is reasonably close to the observations. This model trajectory uses none of the observa- 

tions in the cost function; it withholds all the data points. Two, the model compares 

well with observations that were not included^ in the estimation process. A WOCE 

hydrographic section is used for this purpose later (see Section 3.5.4). Cross-validation 

is one way to give the investigator more confidence in the state estimate. 

To be expUcit, our performance criteria can be listed: 

• Follow what was observed within its uncertainty 

• Adhere to the laws of physics within their uncertainty at all times 

• Combine all information in a statistically rigorous way 

The performance criteria are objectified into one number, the cost function: a sum of 

squared elements of the model-data misfit. A small cost function represents a solution 

which follows all of the performance wishes. Of course, "small" is a relative term which 

must be defined later. Second, we identify uncertain parameters in the model which 

can be adjusted. These parameters are known as the control variables, because they 

are the pai-ameters that allow control of the model. The goal of combining the model 

and observations can now be restated: adjust the control variables such that the cost 

function has an appropriately small value (see Figure 2-1). More specifically, the cost 

function and its individual elements must satisfy the prior error statistics, which include 

^Cross-validation is perhaps a misleading term because true model validation is not possible; only 
falsification is possible. 

''A best state estimate, however, would use all available information in the cost function. 
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specification of the overall error as well as the distribution of individual errors (see 

Section 3.4.2). One added criterion is: 

• Do not allow unrealistically large controls 

Together, these criteria become the mathematical statements which allows us to unam- 

biguously define the problem of combining observations with a model. 

State Estimation 

Figure 2-1: Schematic of state estimation. The goal is to find a model trajectory that is 
within observational uncertainty {O's with error bars). The model trajectory is also sub- 
ject to uncertainty due to model error and uncertain model parameters {shotm as a gray 
probability distribution cloud). Here, the first-guess model simulation {solid black line) is 
not within the observational uncertainty at all times. However, there is a model trajec- 
tory (dashed line) that is consistent with both the observational and model uncertainty. 
This improved model trajectory is the state estimate. 

As a reminder, it is not necessarily true that all the performance criteria can be met. 

In practice, these criteria actually form a very stringent test. In case of failure of one 

or more items, all is not lost. Such a result gives the investigator information about the 

inconsistencies between various observations or could possibly force the investigator to 

rethink the accuracy of measurements. Another possibility is the rejection of the model 
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as inadequately realistic. This serves as a call for model improvement. In any case, 

the performance criteria serve the useful purpose of quantifying the problem at hand, 

whether they can be satisfied or not. 

2.2    Cost function 

The form of the cost function is a squared misfit between the estimate and all a priori 

information. The problem of combining a model and observations is reduced to a least- 

squares problem, albeit a giant one. In this section, the thesis systematically introduces 

the contributions to the cost function. The observations, the prior knowledge of the 

controls, and the laws of physics all play a role. The cost function is given the math- 

ematical symbol J. It is written out in its entirety in terms (2.1a)-(2.1s) on Page 43. 

In general, boldface symbols refer to matrices and vectors, overbars refer to some kind 

of averaging, and primes are some kind of anomaly value. A more detailed guide to 

the individual terms and mathematical symbols follows in the next sections. To repeat 

an earlier theme, the cost function simply takes the form of a sum of squared differ- 

ences. Minimizing the cost function is equivalent to solving a least squares problem, 

although many contributions must be considered. The first five terms (2. la)-(2. Id) are 

the observational misfit terms, the goodness of fit to the observations. The next three 

terms (2.1e)-(2.1g) are the climatological misfits; they constrain the estimate to ocean 

climatologies with considerable leeway. The next fourteen terms (2.1h)-(2.1s) are control 

penalty terms; they constrain the control parameters to lie within a certain range of their 

initial guess or to adhere to dynamical rules. The control penalty terms take the place 

of an expUcit model error term in our cost function. The next sections explain the cost 

function in a term-by-term manner. 

2.2.1    Role of weights 

The generic form of the cost function (Equation (2.1)) has a weighting matrix, W, with 

each term. Critics of inverse problems claim that the weighting matrices determine the 
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entire solution and can be manipulated by the investigator to serve any purpose. They 

are correct that the weights determine the solution to the problem. However, the choice 

of weights should be physically motivated, and the final solution must pass posterior 

error tests. Lorenc (1986) has shown that the weight matrix, W, should be the inverse 

of the noise covariance matrix, Unn, to have the minimum variance solution. In other 

words, the weight used in the cost function is inversely related to the acceptable error 

or noise in the misfit; a smaller acceptable error leads to a larger weight in the cost 

function. Lorenc (1986) further showed that this judicious choice of weights leads also 

to the maximum likelihood solution if the error statistics are jointly normal (Van Trees 

1968). For statistical rigor, only a priori knowledge should be used to determine the 

weights. Then, the final estimate must have errors that satisfy the original specifications: 

a difficult posterior test to pass. Other critics point out that there are many different 

ways to adjust the controls to achieve the same goal. For example, the ocean model 

can be made warmer by either warming the initial condition or by imposing a heat flux 

at the surface. The weights distinguish which process is more likely. In summary, the 

weights are a ubiquitous feature of the cost function, and they are not manipulated in a 

haphazard fashion; knowledge of physics and a priori error statistics drives the choices. 

Although the theory behind the weights may be sophisticated and well-developed, 

the practical application of such ideas is typically far from straightforward. For example, 

the misfit between observations and model may be due to a number of reasons. First, 

the observations themselves contain noise due to measurement error. This is typically 

a small error, although with satellite altimetry such measurement error rivals the sig- 

nal we wish to observe. Second, there may be representation error due to the model. 

Representation error results because the model grid and the observational locations do 

not coincide. In such a case, the model must be mapped onto the observation's loca- 

tion via an imperfect interpolation scheme. With a high-resolution model such as the 

one in this thesis, this form of representation error is small because there is very little 

separation between grid points. Another representation error is due to missing physics 

in the model. All unresolved processes must be considered as possible sources of en'or 
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in a model-observation comparison. 

Zang-Wunsch model of low frequency variability 

To compute the expected representation error, the energy in various wavenumber and 

frequency bands is computed via the spectrum of Zang and Wunsch (2001, hereafter 

ZW, Figiure 2-2). The energy that must be considered noise varies with data tj'pe and 

model resolution. ZW use a simple dynamical model of a linear, continuously-stratified, 

time-varying ocean and a knowledge of a wide variety of oceanographic measurements. 

Their model can be used to infer a universal shape of the frequency-wavenumber spectra, 

and also can be used to infer spectra that are not observable. The main weakness of 

the Zang-Wunsch model is the potential energy structure in the mixed-layer. Quasi- 

geostrophic dynamics do not describe this region of the ocean, so other assumptions 

must be made to account for the seasonal cycle. Nevertheless, the Zang-Wunsch model 

provides a reasonable a priori guess of the mesoscale eddy energy everywhere in the 

domain. 

The recipe for calculating eddy energy from the Zang-Wunsch model follows. First, 

SSH variability from TOPEX/POSEIDON is used to calibrate the horizontal distribu- 

tion of potential energy {I{(j}, A), equation (22), ZW). The horizontal pattern of energy 

used here is very similar to the original pattern in ZW. The vertical structure of energy 

is partitioned in the first three modes with a ratio of 1 : 1 : 1/2. Prom the surface 

potential energj^ and the vertical structure, temperature variance is calculated at every 

level (equation (41), ZW). To account for the seasonal cycle, the Reynolds SST seasonal 

variance is calculated, and added to the previous temperature variance profile with an 

exponential decay scale of 200 meters. 200 meters is chosen to coincide with the deepest 

wintertime mixed layers in the region. Next, eddy kinetic energy is estimated. Surface 

potential energy is related to kinetic energy through geostrophy, as also used by Stam- 

mer (1997). Again, the vertical normal modes are used to extrapolate and estimate the 

vertical structure of kinetic energy. The prior estimates of eddy energy compare well 

with the observations of the Subduction Experiment. In addition, estimates of needed 
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Wavenumber (cydes/km) 10 10" Frequency (cycles/day) 

Figure 2-2: Universal frequency and wavenumber spectrum for the streamfunction of 
the Zang-Wunsch model of ocean variability. From Zang and Wunsch (2001). 
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but unobserved quantities can be made {Figure 2-3). 

Zang-Wunsch Model Eddy Velocity: 310 meters 

12°N 

24°N 

18°N 

40°W 32°W 24°W 16°W 

Figure 2-3: Standard deviation of time-variable zonal velocity at 310 meters in the Zang- 
Wunsch model. This thesis uses this eddy field as an a priori estimate for weights in 
the cost function. Notice two bands of higher eddy energy: the Azores Current and the 
North Equatorial Current. 

2.2.2    Observational terms 

Subduction Experiment moorings 

The state estimate should accurately reflect the observations of temperature and velocity 

made at the five locations of the Subduction Experiment moorings. There is a greater 

density of temperature measurements, but there are also many velocity measurements 

by Vector Measuring Current Meters (VMCM's, Weller and Davis, 1980) in the upper 

1000 meters. VMCM's provide both the u and v component of velocity which is directly 
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comparable^ to model output. Unfortunately, there are no salinity measurements at the 

moorings. Also, several month-long failures are present in the data. In the vertical, 

measurements were concentrated in the upper 1000 meters. Measurements in the deep 

ocean were so sparse that they were ignored for this study; also, our primary objective 

is to understand the mooring data as it affects subduction and upper ocean processes, 

so deep ocean measurements have little influence in a short time period. 

In the cost function, the misfit between the model and the Subduction Experiment 

moorings is: 

EV "'"    E' """^   (T - T^or) ^ WT (T - Tmoor) (2-2) 

+       ZV ""^    E' "^''""   (U - Vmoor) ^ WVEL (U - JJmoor) (2.3) 

^       ^12 man    ^5 moor   (y _ y^^^) T ^^^^ (y _ V^„^) (2.4) 

where T, U, and V are the model temperature, zonal and meridional velocity, Tmoor, 

Umoor, and Vmoor are the observed temperature, zonal and meridional velocity, the 

overbar represents a monthly mean, and Wr and WVEL are diagonal weighting matrices. 

The weighting matrices take into account the instrumental error in the records as 

well as the representation error in the model. The temperature measurements are accu- 

rate within 0.01°C (Brink et al. 1995) and the current meters are assumed to measure 

within 0.005 m/s, although no error estimates were published. The numerical model 

does not accurately represent the physics below scales of 100 kilometers, a much big- 

ger error. Those small scales are either completely unresolved, or mesoscale activity is 

underrepresented and overdamped by numerical friction. Wavenumber spectra of ocean 

properties drop off too quickly at scales smaller than 100 kilometers due to friction. This 

is an example of representation error in the model, and any energy in the observations 

at these scales will have to be considered noise in the observations. Using the model of 

Zang and Wunsch (2001, and Section 2.2.1), it is possible to calculate the ocean vari- 

ability at scales less than 100 kilometers and at periods greater than a month (because 

^If the current meters measured speed, this would be a nonlinear function of the model state, and 
could cause additional problems. 
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we are using monthly means for the comparison). Changes in model resolution require 

a revised estimate of representation error. 

Mesoscale variability is a strong function of horizontal location and depth. For 

example, the eddy kinetic energy varies by a factor of five in the region, with a band 

of high energies in both the Azores Front and the North Equatorial Current. Also, 

the expected variability, and hence representation error, varies by a factor of ten in the 

vertical. In addition, the vertical structure itself changes throughout the region. In the 

northern, "mid-latitude" part of the basin which is observed by the central, northwest 

and northeast moorings, most of the eddy energy is equally partitioned between the 

barotropic and first baroclinic modes. For the southwest and southeast moorings, the 

second baroclinic mode contains much more energy. The vertical partition of horizontal 

kinetic energy is consistent between the mooring observations and the Zang-Wunsch 

model (also see (Wunsch 1997)). All of these subtleties ai-e taken into account in our 

estimate of the expected errors. However, there are a few assumptions here that should 

be highlighted. The expected errors due to the misrepresented mesoscale eddy field are 

assumed to be isotropic, as evidenced by the identical WVEL weighting matrices for 

both u and v. This assumption is actually quite good in this region without a strong 

western boundary current. Also, the Zang-Wunsch spectrum is not a function of time, 

and likewise our weighting matrices are not a function of time. Finally, no covariance 

is assumed between the model-observation misfit at different locations and times. This 

is clearly wrong, but is a first-order attempt to accurately guess the error statistics. As 

can be seen above, a knowledge of the physics has guided our choice for the mooring 

weights. 

TOPEX/POSEIDON altimetry 

Satellite altimetry offers a wealth of information that was not previously available. Al- 

though the satellite altimeter mission was not explicitly part of the Subduction Experi- 

ment, the sheer number of observations of sea surface height made by the TOPEX/POSEIDON 

satellite is staggering, and any estimate of the ocean circulation would be remiss to ig- 
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nore it. Here, direct comparisons are made between the satellite-measured sea surface 

height anomaly and the model on the satellite's ground tracks. The mean sea surface 

height is computed from 7 years of TOPEX/POSEIDON observations and put onto the 

model grid. 

The misfit between the model and the TOPEX/POSEIDON satellite altimetry is: 

360 days 

E     iv'- V't,V "^tAV - v'J (2-5) 

+      i'n-Vtpf'^seoidiri-fit,) (2.6) 

where rf^p is the along-track sea surface height observed from the TOPEX/POSEIDON 

satellite, rj is the model sea surface height on the same tracks, the overbar is a one year 

mean, primes represent the daily-averaged sea surface height anomaly, Wjp is the weight 

on sea surface height anomaly, and Wgeoid is the weight on mean sea surface height field 

(primarily due to errors in the geoid). 

Unlike many other observations used in this thesis, TOPEX/POSEIDON measure- 

ments have considerable instrumental noise. Sources of this noise include orbital tracking 

error and the E-M bias of ocean waves (Fu et al. 1994; Tai and Kuhn 1995). Therefore, 

Wtp takes into account a spatially-invariant and stationary background noise of 4.3 cm. 

For comparison, the signal we wish to track has magnitudes of 5 - 20 cm in this region. 

Also, some percentage of the eddy energy will not be represented by the model. Accord- 

ing to the Zang-Wunsch model, 6% of the sea surface height variance is at spatial scales 

less than 100 kilometers; this is also treated as acceptable noise. As with the mooring 

weights, Wtp accounts for spatial variations in the acceptable noise, but is not a function 

of time and is diagonal. The mean sea surface height field has errors of a different kind: 

errors in the absolute reference level or geoid. At scales less than 1000 km, geoid errors 

dominate the mean sea surface height signal. Wgemd is therefore taken from published 

error estimates of the EGM96 geoid {Lemoine et al. 1997; Wunsch and Stammer 1998). 

With the small domain of the Subduction Experiment, the mean sea surface field is only 

a marginal constraint. 
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2.2.3    Climatological terms 

Although ocean cHmatologies are not usually considered "observations", they are a col- 

lection of observations and they do contain information. Here, the Levitus climatology 

of temperature and salinity and Reynolds sea surface temperature climatology (Levitus 

et al. 1994; Reynolds and Smith 1994) axe monthly-averaged climatologies of the sea- 

sonal cycle. Their information content is used in the least-squares problem by adding 

terms to the cost function. 

The misfit between the model and ocean climatologies is: 

^12 raon   (Tp _ ^^^^y ^^^^^ (^ - TLev) (2-7) 

+ EP --   (S - Stevf Wuvs (S - Suv) (2-8) 

+    E? "^  (Ts/c - T^e,)^ -WssT (Tsfc - Tn.y) (2.9) 

where T, S, and Tsfc are the model temperature, salinity and sea surface temperature, 

Tiev, Siev, and TRey are the Levitus temperature, Levitus salinity and Reynolds sea 

surface temperature, the overbar represents a monthly mean, and WievT> ^Levs and 

WssT are diagonal weighting matrices. 

The Levitus climatology of temperature and salinity includes error estimates as a 

function of depth, and these are primarily used to compute the weights W^e^,. The 

representativeness of a climatology for any particular year must be estimated. Inter- 

annual variability contributes to the misfit between the climatology and model fields. 

Upon further inspection, the published errors in Levitus's product are similar to the 

interannual variability as seen by Roemmich and Wunsch (1984) and Parrilla (1994). 

In addition, there are other forms of error in the chmatologies. The uneven coverage 

of much of the ocean probably presents a large source of uncertainty, but because the 

actual distribution of data points has not been presented, one does not know how this 

would change the error estimates. On a different note, the Levitus compilation repre- 

sents the large-scale density structure of the ocean and not the mesoscale eddy signature. 

Again, the Zang-Wunsch model is used to determine the energy of the mesoscale which 
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is not represented in the dataset. In this case, the cUmatology only represents energy at 

lengthscales larger than 400 kilometers because of its coarse gridding; 58% of mesoscale 

energy in temperature fluctuations is at smaller scales and is considered noise. For sim- 

pUcity, the Reynolds weights WSST are identical to the Levitus weights at the surface. 

After accounting for all of the above sources, the acceptable error in the model fit to 

the ocean climatologies is much larger than the acceptable error for an individual, in- 

situ observation. Because cost function weight is inversely proportional to acceptable 

error, terms (2.7)-(2.9) are downweighted relative to the other observational terms in 

the cost function. This does not automatically render the climatologies unimportant in 

the state estimation problem; the total number of independent pieces of information in 

a climatology determines its relative influence. 

On the consistency of the multiple datasets 

Although our ultimate goal is to combine a model with all forms of observations, one 

must first assiure that the observations are consistent amongst themselves. A comparison 

between observations of differing data types, such as between the mooring temperatinre 

and satellite sea surface height, is difficult. Such a study would be a whole research 

project unto itself (Stammer 1997). This consistency check will be done automatically 

during the process of combining the model and observations, and can be determined by a 

final estimate statistics. Nevertheless, for the sake of bolstering confidence before more 

intensive endeavors, the mooring temperature dataset can easily be compared to the 

Levitus climatology for temperature. Figure 2-4 shows the squared difference between 

the two datasets as a function of depth. The two datasets ai'e consistent within the prior 

error estimates. These error estimates consider the instrumental error in the dataset, 

as well as errors in representation. Consistency between datasets, as shown here, is a 

necessary condition to proceed. 
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Errors: Levitus and Mooring Temperature 

0.2        0.4        0.6        0.8 
Error Standard Deviation [K] 

Figure 2-4: The consistency of the Subduction Experiment mooring temperatm-es with 
the Levitus cUmatology. The soUd line with "X"'s is the prior error estimate in the 
Levitus temperature chmatology as a function of model level (level 23 is the surface, 
and level 1 is the deepest level, 4900 meters). The solid line without "X"'s is the 
standard deviation of the difference between the Subduction Experiment moorings and 
the Levitus climatology. This line is generally to the left of the Levitus error estimate, 
which is a statement of the statistical consistency of the dataset and the climatology. 
Mooring data is only used in the upper ocean, levels 10-23. 
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2.3    Initial and surface controls 

Control parameters are boundary conditions, forcing, or model parameters which are 

varied to control the trajectory of the solution. The term is borrowed from control 

theory, and is sometimes shortened to controls. The choice of control parameters is 

entirely up to the investigator. However, good controls share certain quaUties. They axe 

parameters which axe somewhat unknown. Also, the controls should be identifiable as a 

major source of uncertainty in the model trajectory. A model is said to be controllable if 

changes in one or all of the control variables is capable of driving the model to any point 

in the permissible phase space (Dahleh and Diaz-Bobillo 1999). In an ocean model, 

there are many unknown parameters and forcing fields, and they are likely capable 

of controlUng much of the model solution, although this has rarely been quantified 

(Fukumori et al. 1993). For the Subduction Experiment model, we have chosen the 

following control parameters: 

• Initial Temperature and Salinity 

• Surface Heat Flux and Freshwater Flux 

• Meridional and Zonal Wind Stress 

• Open Boundary Temperature and Salinity 

• Open Boundary Normal and Tangential Velocity 

There are 5,493,537 control variables. 

2.3.1    Initial conditions 

A properly-posed model integration requires the specification of the entire initial state. 

The initial state is relatively unknown and yet makes a huge impact on the model 

results over a one year time period. In om- case, the initial density field, comprised of 

temperature and salinity fields, has a dominant effect on the early stages of the model 

integration and its elements will be chosen as control variables.   The initial velocity 
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field is not explicitly controlled, but comes into equilibrium with the initial density in a 

few days through geostrophic adjustment. A second reason to adjust the initial density 

field is our relative lack of knowledge of it. The Levitus climatology could be used for 

the initial density field, but it does not include any effects of the mesoscale eddy field 

or the interannual variabihty. A better initial density field is the ECCO (Estimating 

the Climate and Circulation of the Ocean) 2° resolution state estimate (Stammer et al. 

2002). We will use this improved global field, then improve the initial conditions once 

again with the regional model. 

To keep the adjustments to the initial conditions within a physically reasonable 

range, we will add penalty terms to the cost function: 

(To - T.^acof W^, (To - T^^aao) (2-10) 

+    (So - So^eco)^ WJ, (So - So^^^o) (2-11) 

where To and So are the initial model temperature and salinity, To^cco ^'^^ ^OBCCO ^^ 

the ECCO 2° state estimate for temperature and salinity interpolated onto 1/6° for the 

same time, W^^ and W^^ axe weighting matrices with nondiagonality marked by a star, 

" *". 

The ECCO state estimate does not have a formal error estimate, but it is undoubt- 

edly a better estimate of the initial conditions than the Levitus climatology. For this 

study, a conservative assumption is that the uncertainty is equal to that of the Levitus 

climatology. Therefore, the diagonal elements of W^^ are identical to 'Wievr- The non- 

diagonal elements of this matrix are outhned below. A correlation length scale of 200 

kilometers, used here, is a conservative choice relative to the peak of atmospheric en- 

ergy in longer wavelengths (~ 1,000 km) (Peixoto and Oort 1992; Kalnay and coauthors 

1996). However, recent scatterometer measurements (Chelton et al. 2001) show small- 

scale shifts in the winds over the Pacific cold tongue, so the correlation lengthscale may 

indeed be quite small in select regions over the open ocean. Further thought is necessary 

to provide more accurate atmospheric statistics. Isotropy is a good assumption in this 
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region away from boundary currents.  The weights on the initial conditions therefore 

allow the addition of a mesoscale eddy field with the proper lengthscales. 

Nondiagonal weighting matrices 

Noisy control adjustments lead this study to implement nondiagonal weighting matrices. 

The controls have nondiagonal weight matrices here, because small-scale, unphysical 

features which represent model error should be repressed. Nondiagonal weights penaUze 

noisy features because they require the fields to spatially covary. Small-scale structures 

in the control parameters are thereby eliminated. 

Theoretically, the best nondiagonal matrix is the inverse of the error covariance 

matrix (Lorenc 1986). Unfortunately, the off-diagonal elements of the matrix are very 

poorly known a priori. Also, inversion of such a large matrix is not computationally 

feasible. Instead, we follow an approximate approach which follows the discussion in 

Lea (2001, Ph. D. thesis, p. 114) and Bennett (2002). For a vector u made of a 

two-dimensional scalar field, they showed 

u^ Wo u + (V'u)^ Wi (V^u) « u^ B-^ u (2.12) 

where Wo and Wi are diagonal matrices, but B"^ is a nondiagonal matrix. For properly 

chosen diagonals in Wo and Wi, B'^ can be made such that B is nearly a Gaussian 

covariance matrix, 

B(ri,r2) « Var{xi,yi) exp{---^^ ), (2.13) 

which represents the covariance between points ri = {xi,yi) and r2 = (^2,2/2)- The cor- 

relation lengthscale for the Gaussian covariance is 200 km for all the control parameters 

because of the large characteristic scales of the atmosphere. In summary, the addition of 

a smoothness constraint of the form of Equation (2.12) mimics a nondiagonal weighting 

matrix with a chosen Gaussian correlation lengthscale. 
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2.3.2    Surface forcing fields 

Wind stress, heat flux, and freshwater flux are the drivmg forces of the ocean circulation. 

The first guess for the controls is the daily and twice-daily NCEP Reanalysis fields 

(Kalnay and coauthors 1996). The individual control adjustments are perturbations 

applied to the NCEP Reanalysis over a 10-day period. 

The penalty for adjusting the surface forcing controls is added to the cost function 

Equation (2.1h)-(2.1k): 

Ef (Tx - rx_J^ W; (r, - Tx„,,J (2.14) 

+       Ef (r, - Ty^.J^ W; (r, - T,_J (2.15) 

+   Ef (H<3 - HQ„,,J^ W|,^ (H<2 - H<3_J (2.16) 

+    Ef (H^ - H^„«p)^ W|,^ (H;. - H^_,) (2.17) 

where r^ and Ty are the zonal and meridional windstresses, HQ and Hjr are heat 

fluxes and freshwater fluxes, r^„^p, rj,„,,p, HQ„^^ and HF„,,^ are the respective NCEP 

Reanalysis fields, and W* represents nondiagonal weighting matrices for each variable 

type. 

There is a lack of information about the daily wind stress, heat flux, and freshwater 

flux over the open ocean. A simple comparison of different wind products reveals strong 

biases and systematic errors of 35-50% hi the Subduction Experiment region (Moyer and 

Weller 1995). Therefore, the controls are allowed to change by the variance of the NCEP 

flelds. The weighting matrices reflect this choice and vary spatially. The nondiagonal 

elements of the weighting matrices are handled as discussed in Section 2.3.1. 

2.4    Open boundary control and estimation 

A regional ocean simulation can only be completed with an additional source of informa- 

tion: the open boundaries. The open boundary conditions fundamentally influence the 

interior solution of the model. Simple changes in boundary conditions cause large differ- 
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ences in the interior circulation; for example, slip and no-slip conditions completely affect 

the circulation of an ideal gyre [(Pedlosky 1996), p.76; Adcroft and Marshall (1998); G. 

lerley and W. Young, personal communication]. The open boundary state can control 

the circulation to a greater extent. In addition, the proper open boundary conditions are 

very uncertain. Unlike temperature and salinity, no climatology of open-ocean velocities 

exists. Open boundary conditions are ideal control variables; they influence the model 

profoundly yet they are relatively unknown. 

Open boundaries control the solution of a regional model to a great extent, as will 

be further shown in Section 3.5.3. Because the open boundaries affect the interior of 

an ocean model, observations in the interior conversely convey some information about 

the correct open boundaries. In principle, this allows an investigator to estimate open 

boundary conditions which are realistic, not just boundary conditions which yield a 

realistic interior. In this thesis, the goal will be both control of the interior through the 

open boundaries, and estimation of reaUstic open boundary conditions. 

Review of open boundary estimation 

A review of the oceanographic literature finds no universally-accepted method for control 

or estimation of open boundary conditions with a primitive equation model. Almost all 

previous studies have used simpHfied versions of the equations of motions to study open 

boundaries (Chareney et al. 1950; Robinson and Haidvogel 1980; Bennett and Kloeden 

1981; Gunson and Malanotte-RizzoH 1996a,b). With the quasi-geostrophic equations, 

for instance, open boundary conditions were successfully nudged toward desired results 

(Malanotte-Rizzoli and Holland 1986). Nudging is undesirable for the present research 

because it is dynamically inconsistent with the physics of the ocean and it also com- 

prehensively removes a whole range of the wavenumber spectrum. Soon thereafter, 

Schroter et al. (1993) used an artificial recirculation zone surrounded by walls to sim- 

ulate and control open boundaries. Seller (1993) estimated open boundary conditions 

with a quasi-geostrophic ocean box model and its complementary adjoint model^. The 

^Adjoint models are detailed in Section 3.2. 
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technical experience gleaned from the simplified equations of motion was applied to a 

primitive equation model only recently (Zhang and Marotzke 1999; Ferron and Marotzke 

2003). 

Two major difficulties have confronted previous attempts to control and estimate 

open boundary conditions in a primitive equation model. One, estimated open boundary 

conditions frequently axe not physically reasonable. Zhang and Marotzke (1999) took 

a first look at this problem. Two, open boundary estimation is often very inefficient 

when many other control variables are present. Ferron and Marotzke (2002) resorted 

to a process that separately estimated open boundary conditions after other control 

variables had been optimized. In the next sections, this thesis offers two novel approaches 

to remedy the problems first seen by previous investigators. 

Physical constraints on the open boundaries 

Reasonable open boundary conditions have a few general characteristics: interior-boundary 

consistency, geostrophic balance, and nearly vanishing net volume flux. Open boundary 

estimation is formulated here with many additional constraints, which leads to an ex- 

tension of the technique devised by Zhang and Marotzke (1999). A hard constraint is an 

equation that must be satisfied exactly; the model equation (Equation (3.2)) represents 

the collection of all hard constraints. A soft constraint is an equation that need not 

be satisfied exactly, but its inequality is penaUzed in the cost function. Therefore, soft 

constraints are satisfied with an arbitrary precision determined by their weight. 

Open boundary control with the primitive equations 

The boundary conditions in the GCM require the complete specification of the state: 

temperature, salinity, meridional and zonal velocity (see Appendix A). The first-guess 

boundary conditions are from the ECCO 2° state estimate. There axe very few choices 

for a time-varying open ocean velocity field to be used for this purpose. The ECCO 

estimate is interpolated up to 1/6° and varies monthly. Likewise, we will allow the 

adjustments to the boundary conditions to occur monthly; hence there are 12 sets of 
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adjustments for one year. 

The penalty for adjusting the open boundary conditions is: 

EP(To.fc. - T^o.b.EccoV ^T^.b. (To.6. - T^o.b.BCCo) (2-18) 

+        EP(SO.6. - SoM.scaoV Ws.., (SoM. - Sa6.BCCo) (2-19) 

+ Ej^(u:.6, - u;,,,, j^ wv,. (u:., - u:,,,, j        (2.20) 

+    Ep(U'o.6, - lJ'o.t.Bccof ^Vu (U'0.6. - "U'cM-Ecco) (2-21) 

+ EViKt. - ^:.b.scaof wv. {v:., - v:.,,,^ j        (2.22) 

+   Er(V'..6. - V'o.b.EccoY Wv,, (VV6. - V'„,6.^^^,) (2.23) 

+ l^t   \   dz    ^ pof dl!     ^ageosK   Q^    ^ p^f\ dl > K"^-^^) 

+ Ej'(Vl ^A,,)^ W^oiiiu. (Vl ^A^,) (2.25) 

where ECCO refers to the ECCO state estimate, To.b. and So.6. are open boundary 

temperature and sahnity, U^.j,, and V^ ^ are depth-averaged or "barotropic" boundary 

velocity, U'o.6. and V'o.6. are the "baroclinic" velocity, Vx is the open boundary normal 

velocity, dp/dl is the gradient of density along the boundary, A;^ is a vector of the 

area of the open boundary grid-cell faces, and W refers to various diagonal weighting 

matrices. 

The weighting matrices serve different purposes for the various terms of the cost 

function. For terms (2.18)-(2.19), we are using the ECCO state estimate as a first guess. 

Similar to the rationale in Section 2.3.1, the open boundary temperature and salinity 

will be given the same uncertainty as the Levitus fields. This is because the coarse 

resolution ECCO boundary^ conditions once again do not include a mesoscale eddy field. 

This is a conservative estimate of uncertainty because the ECCO state estimate was 

computed for our particular year of interest, 1992-93, unlike the Levitus climatology. On 

the other hand, very httle is known about the uncertainty in open boundary velocities. 

Instead of pleading complete ignorance, the weights in terms (2.20)-(2.23) constrain 

the velocities to have an appropriate magnitude. The weights are split into barotropic 

and baroclinic components because they obey different dynamics, and they need to 
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be controlled separately. Term (2.24) is a penalty for open boundary velocities which 

deviate from thermal wind balance (see Section 2.4.1). Finally, the net volume flux 

(term 2.25) into the domain is expected to be nearly balanced (see Section 2.4.2). 

2.4.1    Thermal wind balance 

The velocity field is strongly coupled to the density field, and a reasonable estimate 

should reflect this fact. The eastern subtropical gyre has a Rossby number of approx- 

imately 0.1 and therefore the coupUng is primarily explained by geostrophic balance. 

Together with hydrostatic balance and the Boussinesq approximation, the thermal wind 

equations state that the vertical velocity shear depends on horizontal density gradients 

(Pond and Pickaxd 1983): 

^^_9_^     ^^ i-^ (2 26) 
dz     pofdy'    dz        pof dx 

where u is velocity in the x direction, v is velocity in the y direction, g is gravity, / is the 

Coriolis parameter, and po is a reference density. In the interior, the coupling is expHcitly 

calculated by the general circulation model. On the open boundary, the ocean state is 

prescribed and does not necessarily follow the thermal wind equations. Unbalanced 

open boundary conditions create spurious gravity waves which cause deterioration in 

the boundary conditions' ability to control the model interior in a beUevable way. The 

estimation and control of open boundary conditions demand thermal wind balance. 

Stevens's method: a hard constraint 

The ocean state on the open boundaries can be kept in geostrophic balance by mod- 

ifying the model equations. Stevens (1991) solved for the baroclinic normal velocity 

on the boundary by linearizing the momentum equation of a primitive equation model. 

The linearized momentum equation reduced to thermal wind balance to first order. To 

restate, only temperatiure and salinity were prescribed on the boundary and the baro- 

clinic velocity was then diagnosed. The depth-integrated, or "barotropic", velocity is an 
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extra variable to be prescribed. Therefore, the open boundary normal velocity, v±, is 

calculated 

v,_iz) = -^   r {% dz + Vo + vu (2.27) 

where H is ocean depth, I is distance along the boundary, ■^o is an integration con- 

stant, and Vbt is the barotropic velocity. The integration constant is consistent with the 

definition of the barotropic velocity as the depth-weighted average velocity: 

v,t = ^ tvAz)dz. (2.28) 
H JH 

Two problems exist with this method. First, thermal wind balance should only 

hold to the extent that geostrophic balance holds. The Rossby number for the eastern 

subtropical gyre is 0.1, which means that the ageostrophic current is roughly 10% of the 

geostrophic current. Furthermore, the mixed-layer and fronts have significantly larger 

Rossby numbers and stronger ageostrophic currents. The open boundaiy velocity should 

not exactly follow the geostrophic relation or else any information about the ageostrophic 

flow will be lost. Second, the calculation of Equation (2.27) is noisy due to the horizontal 

gradient. Zhang and Marotzke (1999) showed that practical implementation is frequently 

corrupted by noise. Based on these results, another method to constrain the open 

boundaries to thermal wind balance is sought. 

Soft constraint method 

The cost function can serve a dual purpose; not only can it constrain the model to 

observations, it can penalize the model's deviation from dynamical balance. A soft 

constraint (see Section 2.4) is ideal for thermal wind balance on physical grounds because 

it should not be satisfied perfectly. The extra term in the cost function is: 
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where the cost function is summed over 12 months, V'x is a vector of the monthly- 

averaged, open boundary normal baroclinic velocity, dp/dl is a vector of the gradient 

of density along the boundary, and V^ageos is a diagonal weighting matrix. The weights 

are appropriate for a Rossby number of 0.1 below 100 meters depth, and are zero for 

anything above 100 meters depth. Therefore, 10% of the magnitude of the velocity is 

the expected error. In practice, the model easily conforms to this soft constraint because 

the control variables completely control the size of this term. The use of soft constraints 

reveals the power of the least-squares problem; our formulation here is easy to apply to 

the previously-existing machinery and works well. 

2.4.2    Estimating net volume flux 

A convenient assumption is that the net mass flux into a region is perfectly zero, but 

observations from tide gauges (Wunsch and Gill 1976) and the TOPEX/POSEIDON 

altimeter (Stammer et al. 2000; Fu et al. 2001) do not always support this statement. 

Wunsch and Gill (1976) showed large mass flux convergences in the tropical Pacific tide 

gauge network. The TOPEX/POSEIDON altimeter mission showed surprisingly strong 

barotropic motions at high latitudes with timescales of 1-10 days (Stammer et al. 2000). 

The sea surface height variations due to these motions imply rapid, large-scale, depth- 

integrated movements of water. Recently, a 25-day period, large-scale oscillation was 

detected in the Argentine Basin (Fu et al. 2001). The wave could be explained by a basin 

mode with a depth-integrated transport of 50 Sv. These observations all suggest that 

there are timescales over which the net mass flux into a region of the ocean is nonzero. 

Ideally, the domain-wide mass flux convergence would be an estimated quantity from 

this thesis. 

The distribution and movement of mass in the ocean is not understood fully. This 

is illustrated by Munk's (2003) assertion that global sea level rise can not be properly 

attributed to either eustatic or steric effects. Recent measurements of the global sea 

level trend (Munk 2002; Cazenave 2002) must be due to melting of land-bound ice 

(eustatic effect) or due to the expansion of warmed seawater (steric effect), but our best 
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estimates today are not capable of closing the budget. In a regional model, sea surface 

height observations are affected primarily by two analogous effects: the heat content 

of a column of water and the net influx of mass into the domain. If the net mass flux 

into a region were fixed to zero, the information content of the sea surface observations 

could be diminished or misinterpreted. Such concerns are probably not warranted in 

the Subduction Experiment region, but it is still a good opportunity to prepare the 

techniques for use in other regions. 

In a Boussinesq model such as the MIT GCM, conservation of mass is exchanged for 

conservation of volume because of an inconsistency between the equation of state and 

the statement of nondivergent flow (Adcroft (1994), p.22). Ideally, the net volume flux 

into a region is not fixed to zero, 

/   Vl H{1) dl # 0, (2.30) 
Jbdy 

but large imbalances are not allowed either. In discrete space and time, an imbalanced, 

i.e. nonzero, volume flux can be penalized by a soft constraint in the cost function: 

f:(Vi ""Auf W^oifiu. (Vl ^A,.) (2.31) 
t 

where V^ is a vector of the depth-integrated velocity normal to the boundary, Aiz is a 

vector of the corresponding open boundary cross-sectional area, and Wyoifiux is a scalar 

weight. The weight is determined by physical reasoning; a 50 Sv imbalance like that 

reported by Pu et al. (2001) in the Argentine Basin could be considered an upper limit 

on volume imbalance. In that case, W^oifiux = 1/(50 Sv)^. Although 50 Sv seems like a 

very large number, this amounts to only a 3 mm/s horizontal inflow around the domain 

of the model. The addition of a soft constraint is a necessary step for any volume flux 

convergence estimates. 
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Ill-conditioning of the volume flux estimation problem 

Estimating volume flux is difficult even with a linear system because of the physical 

processes involved and the associated mathematical ill-conditioning. A toy channel 

model with only two control parameters already displays the ill-conditioning. Consider 

a steady, rotating, zonal channel with constant inflow and outflow (Figure 2-5). The 

mean sea surface height trend in the channel and the meridional sea surface slope in 

the center of the channel are observed; these two quantities could be derived from 

TOPEX/POSEIDON satellite altimetry fields. The goal is to estimate the inflow and 

outflow of water into the channel. An imbalance of inflow and outflow makes a mean 

sea surface height trend due to the conservation of volume: 

Iti 
'■xy 

\^(nit      '^inj (2.32) 
'■yz 

where Axy is the sea surface area. Ay;, is the cross-sectional area of the channel, and u 

is velocity in the zonal direction. The meridional sea surface slope is also observed; it is 

related to the channel velocity by geostrophic and hydrostatic balance: 

dy     g       g 2 

In this example, the problem is linear. In matrix form, the problem is restated: 

(2.33) 

Ui; + 
\ Uaut 

ni 

"■2  J 

dt 

dy 

(2.34) 

Knowledge of the right hand side can be used to invert for the flow field. However, 

this matrix is ill-conditioned in most oceanographic applications because of the values 

of the physical constants. For the Subduction Experiment model, ^ is roughly 1000, 

and 4- is approximately 5 x 10~^ mr'^. Inversion of the matrix will lead to large errors 

because it is nearly singular (Strang 1996). A common strategy to better condition the 

65 



Idealized Channel 

U. 
in 

Ti=constant 

T|=mngtant u out 

Figure 2-5: Schematic of idealized channel. Uniform and constant velocity enters and 
leaves the channel, which leads to a zonally uniform sea surface height under geostrophy. 
Any difference between the volume influx and outflux makes the mean sea surface height 
change with time. 

matrix is row scaling, as discussed by Wunsch (1996, p. 121); however, the rows in this 

problem have ahready been scaled by the observational accuracy, ni and 1x2, which is 

nearly equal in both rows. A second approach is column scaling; this recognizes that 

there is information in the expected solution covariance, Hxx- The solution must reflect 

that the inflow and outflow are negatively correlated to conserve volume. Rescaling and 

rotating the input and output velocities, 

(2.35) 

makes Equation (2.34) well-conditioned and easily invertible. Column scaling makes 

explicit the expectation that the difference between inflow and outflow is small. 

Application to the general circulation model 

In the general circulation model, ill-conditioning of the optimization is eliminated by 

nondimensionahzation of the open boundary velocity controls, which is equivalent to 

the column scaling method above. For the GCM, nondimensionahzation is numerically 

implemented term-by-term, which is analogous to a diagonal Ra;^, because large matrix 

multiplication is not possible. Unfortunately, a diagonal matrix does not resolve the ill- 

conditioning, because of the strong covariance between inflow and outflow. To resolve the 
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problem, the control parameters are re-chosen; this amounts to a rotation and rescaling 

of the controls. Originally, the barotropic normal velocities around the domain was 

chosen as the control parameters. Instead, one may add the domain-averaged imbalanced 

velocity as a control parameter itself. Then, the normal velocity has three components: 

Vl(x, z) = VECCO{X, Z) + Vbt{x) + Vimbalance (2-36) 

where VECCO is the first-guess barotropic velocity from the ECCO global state estimate, 

Vbt is the barotropic control adjustment, and Vimbalance is another barotropic control 

adjustment which is evenly applied to all boundary points. In this particular form, 

the controls do not specify a unique open boundary velocity field because Vimbalance 

can compensate for changes in V^. For uniqueness, a hard constraint''' is added to the 

original barotropic control adjustments: 

/   VUl)H{l)dl = 0, (2.37) 
Jbdy 

the original barotropic adjustments are the domain-balanced part of the total barotropic 

adjustments. With this formulation of the problem, the net volume flux is estimated 

without a problem in the general circulation model. 

In many of the early results of this thesis, the general circulation model is run with 

a hard constraint on the net volume fiux. The constraint of zero net volume flux is 

appended to the model equations (Equation (3.2)). For the Subduction Experiment 

region, the estimated volume flux into the basin is nearly zero anyway, so the early 

results with a hard constraint are not significantly altered from later results. 

2.5    Chapter summary 

The observations of the Subduction Experiment do not provide enough coverage to 

adequately form budgets and analyze dynamical balances of the mesoscale ocean cir- 

''The actual implementation is a discrete sum, but the meaning is more easily seen in the continuous 
formulation. 
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culation. Here, a combination of the observations with a state-of-the-art, 1/6° ocean 

general circulation model provides an estimate that has sufficient resolution in time and 

space. The concept is to find a model trajectory that fits the observations within their 

uncertainties. The cost function unambiguously describes the "goodness" of a partic- 

ular model trajectory; it is the squared misfit between the model and the Subduction 

Experiment moorings and the TOPEX/POSEIDON satellite altimeter (as well as many 

other terms). The model trajectory is controlled by varying uncertain model parameters: 

the initial conditions, the surface forcing, and the open boundary conditions. Despite 

the high complexity, the combination of a model and observations here is just a large 

least-squares problem. 
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Chapter 3 

Eddy-Resolving State Estimation 

3.1    Overview of chapter 

The search for an eddy-resolving model trajectory that fits observations is a challenge 

due to the nonlinear nature of the model itself. The method of Lagrange multipliers 

(Section 3.2) uses the gradient of the cost function to search for a model trajectory 

within the uncertainty of observations, but will the gradients derived from a nonlinear, 

eddy-resolving ocean model be useful? Nonlinear models potentially produce multiple 

stationary points in the cost function, and gradient-search methods may have difficulty 

in finding a solution to the least-squares problem. For example, optimization studies 

with geostrophic turbulence models (Tanguay et al. 1995) and basin-wide ocean models 

(Lea et al. 2000; Kohl and Willebrand 2003) converged to local minima that were not 

the true solution. In addition, ocean models have thresholds and switches which are 

further examples of nonhneaxity. Local gradients do not give any information about 

thresholds, and may miss important featirres of the dynamics. 

Despite these concerns, the intrinsic dynamics of the reahstic eastern subtropical 

gyre model used here are more linear than the extreme models of previous studies that 

gave problematic results. A large supply of data (as shown on Page 43) and an excellent 

first guess of the controls from a coarse resolution model promise to help the search for 

a viable state estimate here. Under these conditions, the gradients of the eddy-resolving 
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primitive equation ocean model do help find a consistent solution between model and 

data for the eastern subtropical gyre. In the process of finding the model estimate, 

the dynamical behavior of the eddy-resolving model is quantified, with implications for 

predictability of the ocean. The final product of this chapter is an eddy-resolving state 

estimate to be used in Chapter 4 for the study of subduction. 

3.2    Method of Lagrange multipliers 

The method of Lagrange multipliers solves a constrained least-squares problem and is 

shown to be a logical choice for ocean state estimation. Although the term Lagrange 

multiplier is familiar to physicists, the method has been called many other names, most 

notably the adjoint method (Hall et al. 1982; Thacker and Long 1988; Tziperman and 

Thacker 1989), the Pontryagin Principle (Wunsch 1996), and 4D-Var (LeDimet and 

Talagrand 1986; Talagrand 1997). The method is well-suited for oceanographic datasets 

where all the measurements have been collected and compiled. Then, the data can 

be used all at once — a whole domain approach (Figure 3-1). The method of Lagrange 

multipliers also saves computation; lai-ge covariance matrices are not calculated. Another 

feature is the utility of intermediate results; sensitivity information is a by-product of 

the optimization problem. The method of Lagrange multipliers is therefore an attractive 

choice for solving the ocean state estimation problem. 

The method is potentially limited by strong nonlinearity in the model, the lack of 

uncertainty information, and the difficulty of hand-coding an adjoint model. Here, the 

goal is to extend the method to nonhnear systems. The lack of uncertainty information 

has been remedied in small-dimensional systems by use of the Hessian matrix (Thacker 

1989). In addition, the adjoint of the MIT GCM is obtained with relative ease through an 

adjoint translator (Giering and Kaminski 1998). In hindsight, the traditional limitations 

of the method of Lagrange multipliers do not deter the investigation here; in fact, some 

of the drawbacks serve as motivation. 

70 



Y{t) 
X  -•" 

X --- 

X Observation 
- Model Simulation 
- Improved Model 

Trajectory 

Y(t) 

^ 

/ 

X observation 
• corrected variable 
O model prediction 

Figm-e 3-1: Pictorial view of two state estimation techniques. The method of Lagrange 
multipHers (top) is a whole-domain method used in this thesis. Whole-domain methods 
use observations over the entire time domain at once to fit the model. A more detailed 
picture of whole domain state estimation is given in Figure 2-1. In contrast, the Kalman 
Filter {bottom) is a sequential method which uses observations in sequential steps and 
incorporates incoming data. The Kalman Filter/Smoother {not pictured) improves the 
Kalman Filter solution, yielding the same solution as the method of Lagrange multipliers 
in a linear system. The Kalman Filter/Smoother is both a sequential and whole-domain 
method. Prom Giering and Kaminski (1998). 
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3.2.1    Appending Lagrange multipliers 

The method of Lagrange multipHers finds a least-squares solution subject to a constraint. 

Mathematically, the method works by appending extra terms to the cost function. The 

original, constrained optimization problem^ is transformed into an unconstrained one 

where special structure inherent in the equations allows efficient solution techniques. For 

example, a generic and condensed cost function is minimized using Lagrange multipliers 

below. 

The goal is restated: 

minimize   J = tU   [E(t)x(t) - y(t)] ^ W(t) [E(t)x(i) - y(t)] 

+ Y.t,' nity Q(f) nit) (3.1) 

subject to the constraint x(t + 1) = £[x(t), Bq{i), ru(t)] (3.2) 

where x(i) is the state vector of temperature, salinity, and velocity, 

y(t) is the observations and E(i)x(t) is the model estimate of those observations, 

u(i) is the control vector of external forcing and boundary conditions, 

ru(t) is the effect of control adjustments and model error on the model trajectory, 

Bq(t) is the known forcing, 

C represents the nonlinear model operator, 

and W{t) and Q{t) are weighting matrices. 

The time units have been nondimensionalized so that the timestep is one unit. At = 1. 

The first term of the cost function is the squared misfit between model and observa- 

tions. To relate this to Chapter 2, this generic term subsumes the first eight terms of the 

cost function, (2.1a-2.1g). The second term bounds the size of the control terms, which 

represent unknown boundary conditions, surface forcing errors, and model error. This 

term is a succinct way of writing terms (2.1h)-(2.1q) of the cost function. (Terms (2.1r)- 

(2.1s) have no analogue in the present example, but the mathematics would follow in a 

^Optimization and minimization are used interchangeably.   Optimization is a more general term 
encompassing both maximization and minimization problems. 
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similar way.) The constraint is the nonlinear- model. For all minima of the cost function, 

dJ/dx{t) and dJ/du{t) vanish. For a state of size M and controls of size N, M+N equa- 

tions need to be satisfied idJ/dxi{t) = 0, 1 < i < M, and dJ/dnk{t) = 0, 1 < A; < iV). 

However, the state vector, x(t), directly depends on the control vector, u(t), by the 

model dynamics. Now, less than M + N independent variables are available to satisfy 

the M + A?' constraints for a minimum. This overdetermined system typically does not 

have a solution for arbitrary x{t) and u{t) because the model constraint is violated. 

Instead, the solution method should search for a stationary point while simultaneously 

satisfying the model constraint. 

In the late 1700's, the Itahan-French mathematician Lagrange suggested appending 

new terms to the cost function to solve the constrained minimization problem. Following 

his advice, the new function is 

J = Eto [E(t)x(t) - y(t)]^W(t) [E(i)x(t) - y{t)] 

+ Eliro' u(t)^Q(t)u(t) 

- Etio' Kt + l)^{x(t + 1) - £[x(t), Bq(t), ru(t)]} (3.3) 

where /i(t) is a vector of Lagrange multiphers. The number of Lagrange multiphers, 

M, is equal to the size of the state. For every state variable, there is a corresponding 

Lagrange multipHer. In this form, the appended cost function is sometimes called the 

Lagrangian function, in analogy to classical mechanics. The last term is always zero 

if the model constraint holds, so the numerical value of the appended cost function is 

the same as the original cost function. The Lagrange multiplier term is appended as a 

mathematical device so that all the variables, x(i), u(t), and now /L*(t), can be treated 

as independent variables (Strang 1996). This works because the Lagrange multipliers 

take values that make the partial derivatives {dJ/dxi{t), 1 < i < M) vanish. The un- 

derlying mathematical machinery exploits the explicit relationship between the controls 

and state, as embodied in the forward model. If there are N controls, the original con- 

strained minimization problem in the space of the state and the controls had dimension 
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M + N. The Lagrange multipliers reduce the problem to an unconstrained minimization 

problem of dimension N in the space of the controls alone. 

After resolving the dependency between the controls and the state, all derivatives of 

the cost function all must independently equal zero for the constrained minimum. Taking 

these three sets of derivatives yields the three sets of normal equations (the analogue of 

the continuous-time Euler-Lagrange equations (LeDimet and Talagrand 1986)): 

^'^        0 :^ x(t + 1) = £[x(t), Bq(t), Tu{t)] (3.4) 
dfi{t) 

^ = 0 =^   M(t) = (^)'^M(t + 1) + E(i)^ W(t) [E(t)x(t) - ym      (3.5) 

_^ ^ 0 ^ u(t) = -Q(i) {^f T^nit + 1) (3.6) 

The first equation is the nonhnear model, the MIT GCM in this project. The second 

equation is the adjoint model. In this equation, the transpose of the tangent linear 

model (to be defined in Section 3.3.1) acts upon the Lagrange multiplier vector. The 

model-observation misfit, E(t)x(t) - y{t), forces the adjoint model. The third equation 

relates the Lagrange multipliers and the controls. Recently, the study of the set of 

normal equations has been popularly called adjoint modeling. Considering all three sets 

of equations, there are 2M -I- N equations and 2M + N unknowns. Mathematically, this 

is a formally just-posed problem. In the case of linear constraints, solution is possible 

by matrix inversion - except for the large dimension of the problem. In any case, 

the method of Lagrange multipliers explicitly accounts for all constraints, and provides 

machinery to find a constrained minimum. 

3.2.2    Solution method for the normal equations 

For nonlinear constraints, the normal equations (3.4)-(3.6) ai-e not directly solvable, but 

their special structure can be exploited. One procedm-e, used in this thesis, is: 

• 1) Forward sweep.   Make a first guess of the controls, usually u^°\t) = 0, 

and use the forward model (3.4) to get a first estimate of the state, x(°)(i) (the 
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superscript (0) refers to the first-guess trajectory that evolves through time). If 

the misfit between the model and observations is within the expected error, the 

model trajectory is the state estimate. Otherwise, proceed to item 2. 

2) Backward sweep. Ex^°)(t) - y(t) can be evaluated and used to drive the 

adjoint model (3.5). Use n{tf + 1) = 0 as the initial conditions to the adjoint 

model because no observations axe present after tf. Integrate backwards in time 

(as detailed in Section 3.2.3 below). 

3) Update controls. Unless fi{t) = 0 for all times t, the third set of normal 

equations (3.6) will not be satisfied. /j,{t) = 0 is not desirable, because then the 

model fits the observations exactly, which is not reasonable for observations with 

noise. Instead, use Equation (3.6) to give a new estimate, u^^)(i) (to be explained 

in detail in Section 3.2.4). Return to item 1 and iterate the procedure. 

3.2.3    Adjoint model integration 

Step 2 above shows that the adjoint model can be integrated backwards in time when 

given the initial conditions, /x(t/ + 1) = 0. During the adjoint integration, the forward 

model trajectory is needed, but in reverse order. The transpose of the tangent linear 

model is linearized about the forward model state, as seen in (3.5). The time-evolving 

forward model state, however, is too large to be stored in memory at once. Checkpointing 

schemes are an efiicient numerical tool for recalculating the forward model trajectory 

during an adjoint model run (Griewank and Walther 2000). At evenly-spaced checkpoint 

times, the forward model state is saved to disk for use in the adjoint model. In this way, 

neighboring forward model states can be recalculated with a short model run instead of 

the full model run from the initial time. Checkpointing works as a tradeoff that reduces 

memory requirements by adding computation. This technical advance from computer 

science makes the solution method of Section 3.2.2 possible. 
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3.2.4    Gradient descent 

The third step above, "update controls", is not nearly as straightforward as previ- 

ously presented; in fact, whole textbooks have been written on the subject of opti- 

mization theory (Luenberger 1984; Gill et al. 1986). To review, the problem here is 

analogous to navigating a mountain range and looking for the deepest hole (but in a 

many million-dimensional space!). The method of Lagrange multipliers calculates a gra- 

dient, dJ/du{t), to help search the control space. Is this a computationally efficient way 

to find a solution? The answer is apparent after comparing search methods which do 

not use gradients, and those that do. 

Methods that do not use gradients, such as simulated anneahng (Metropolis et al. 

1953; Press et al. 1992 p. 443; Barth and Wunsch 1990) and the simplex method 

(Dantzig et al. 1955), have been used for many years with success. Genetic algorithms 

(Holland 1975; Davis 1991), another class of search methods, promise to improve the 

performance of non-gradient optimization methods, but they have rarely been tested in 

oceanographic apphcations (Barth 1992; Hernandez et al. 1995). How many forward 

model runs are necessary to find a solution with these non-gradient methods? In the 

region of a minimum in control space, the least-squares form of the cost function gives 

a quasi-parabolic topologj^, 

J(u)  « u^B^Bu-g^u + c. (3.7) 

This assumption is proved in Section 3.3.1 with a linear model. The number of param- 

eters that describe the shape of J is equal to the number of free parameters^ in the 

matrix B, the vector g, and the scalar c, which is A^^ -I- iV -|-1 when N is the number of 

control variables. All of these parameters can change the location of the minimum. In a 

worst case scenario, OiN"^) pieces of information must be collected. This could be done 

by A^"^ forward model integrations. For our case, it is impractical to run the forward 

model that many times. 

^Precise accounting yields {1/2)N{N + 1) parameters.  Because B^B is positive definite, B is an 
upper-triangular matrix by the Cholesky decomposition. 
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Gradient Search Methods 

Control 1 

Figure 3-2: A schematic of a paraboloidal cost function topology with respect to two 
control directions in phase space. For an anisotropic paraboloid, contour lines of con- 
stant cost function trace an ellipse {thin lines, "J-isolines"). In this case, the direction 
perpendicular to the J-isolines {Steepest Direction) no longer points to the minimum. 
Using information from second derivatives, the direction to the minimum is calculated 
{Newton Direction). 

Knowledge of the gradient increases the efficiency of a search algorithm and makes 

large-dimensional optimization possible. In contrast to the forward model, each integra- 

tion of the adjoint model yields N independent pieces of information that help in the 

search for a minimum. The gradient of the cost function is a vector in A'' dimensions. 

As long as the adjoint model can be computed with less cost than A'' forward model 

integrations, the gradient gives a gi'eat amount of guidance in optimization, without an 

inordinate number of forward model integrations. In the case at hand, the adjoint of the 

MIT GCM calculates the gradient with a computational cost of six forward model in- 

tegrations. In large-dimensional problems, calculation of the gradients from the adjoint 

model makes optimization possible. 

A naive search would simply change the controls in the direction given by the gra- 

dient, but better gradient descent (or direction set) methods have been discovered. The 

method of steepest descent described by Press et al. (1992) "greedily" adjusts the 

controls in the direction of the gradient. This method is plagued by difficulties when 

"narrow valleys" are present; that is, when partial derivatives are very nearly zero in 
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some directions, but very large in others. The method always finds the local mini- 

mum, but it inefficiently searches in a zig-zag path near the bottom of a valley (see 

Press et al. (1992), Fig. 10.5.1, p. 407). Quasi-Newton methods^ are superior because 

they take the second derivative, or curvature, into account. Suppose a cost function 

is well-approximated by Equation (3.7) and a first guess of the controls u(°). With an 

evaluation of the cost function and gradient at u(°), the underlying topology of the cost 

function is approximated by: 

J(u) = J(u(°)) + VJ(u(°))^(u - u^"^)) -(- (u - u(°))^B^B(u - u(°5). (3.8) 

The gradient of Equation (3.8) gives 

VJ(u) = VJ(u(°^) + 2B^B(u - u(°)). (3.9) 

The local stationary point occurs where the gradient is zero. Therefore, the direction of 

the minimum is actually 

(u(^^^) - u(°)) = -i(B^B)-^VJ(u(°)) (3.10) 

where the steepest descent direction VJ(u(°)) is modified by (B^B)~^ (Figure 3-2). This 

matrix is usually called the Hessian, H = (B^B)-\ and it contains second-derivative 

information. The variable storage quasi-Newton method of Gilbert and Lemarechal 

(1989) uses differences of the first derivatives to form an approximate Hessian. Hence, 

the storage of the Hessian is done without large use of computer memory. In summary, 

the variable storage quasi-New1;on search accounts for many lessons learned in optimiza- 

tion theory, yet is computationally feasible for large problems. Gradient search using 

the method of Gilbert and Lemarechal (1989) is used in this thesis. 

^Quasi-Newton methods are a type of variable metric optimization method which only approximates 
the Hessian matrix. 
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3.2.5    Interpretation of Lagrange multipliers 

The Lagrange multipliers serve two completely different purposes; they are useful for 

optimization problems as shown above, but they also have a physical interpretation. 

The partial derivative of Equation (3.3) with respect to u gives: 

dJ       (  dC   ^^ 
[W^^   rV(*+l). (3.11) d\i{t)     \d{Tn) 

Prom this equation, the Lagrange multipliers give the gradient of the cost function with 

respect to the control variables. In an optimization context (like most of this thesis), J 

includes the data-model misfit, and hence, the Lagrange multiphers give the direction to 

change the controls in order to minimize J. This is the underlying principle behind the 

"update controls" step above. In this case, the Lagrange multipliers are directly related 

to the gradient that is used for optimization. Another fundamental equation relates the 

Lagrange multiphers to the gradient of the cost function with respect to the state (see 

Appendix B). 

In addition to optimization apphcations, Lagrange multipliers supplement the dy- 

namical understanding of a model. In cases where J represents a physical quantity, the 

form of Equation (3.11) will differ, but the Lagrange multipliers still give the gradient of 

the cost function with respect to various parameters. The Lagrange multipliers therefore 

represent sensitivity (Hall et al. 1982; Schroter and Wunsch 1986). This sensitivity has 

a physical significance in its own right and has been used to interpret the physics of the 

ocean (Marotzke et al. 1999; Bugnion 2001; Hill et al. 2004). The double nature of the 

Lagrange multipliers is an added benefit of the method. 

3.3    Model dynamics and optimization 

Model dynamics affect the shape of the cost function in control space through the model- 

data misfit, the first term in the generic cost function (Equation (3.1)). In the case of a 

linear model, the least-squares formulation has a global parabolic shape, as previously 

79 



assumed (see Equation (3.7)). More complicated shapes emerge when the model pre- 

dictions, Ex(t), depend nonlinearly on the controls, u(t). Some cost function topologies 

make the search for a minimum more difficult, usually because the gradient with respect 

to the controls has Uttle use. The emergence of many local minuna in a cost function is 

one troublesome scenario, as gradient search methods do not distinguish between local 

and global minima. In previous studies (Lea et al. 2000; Kohl and Willebrand 2002), 

eddy-resolving ocean models based on the nonlinear equations of motion gave rise to 

many local minima. Models with thresholds are another example of nonUnearity. Gra- 

dients give a local measure of the cost function shape, but may not be accurate when 

extrapolated to a finite region of phase space with a d5Tiamical regime change. In sum- 

mary, the difficulties of nonlinear optimization are due to the model dynamics; specific 

cases are illustrated here, and then compared to the general circulation model problem. 

3.3.1    Lineair versus nonlinear models 

In this section, the recovery oi initialization problem of control theory is used to illustrate 

how the cost function shape differs when computed with a nonUnear model versus a linear 

model. Consider the goal of estimating the initial model state given one observation of 

the state at a later time. Successful recovery of the initial conditions depends on the 

length of time between the observation and the requested estimate, tf — to. The results 

of this sample problem can be generalized to the case with many observations; hence, the 

arguments presented below are applicable and relevant to a wider variety of situations. 

The problem is restated as a least-squares minimization of the function: 

J = [x(ty) - x°*^(t^)]^ Witf) [x(t;) - x°'^{tf)], (3.12) 

where x{t) is the model state, x°^*(t) is an observation of the state, and W(t/) is a 

weighting matrix. If all the observations are independent and weighted equally, W(i/) 

is the identity matrix; for simplicity, we take this approach and drop W{tf) hereafter. 

The problem is solved by searching over the possible initial states. Therefore, knowl- 
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edge of the dependence of J on the initial state, XQ, is required. The model is part of 

this dependence: 

x(t/) = £„ o ... o £2 o £i o x{to) = 7^(t/,to) x(to) (3.13) 

where n is the number of model timesteps between the initial and final time, o is the 

composition operator, and the resolvent, 7^(t/, to), is shorthand for the string of possibly- 

nonhnear model steps. In the unconstrained search space, the cost function is now: 

J[x(to)] = [7^(t/,to) x(to) - ^°'%tj)\^ [ntf.to) x(to) - x°*^(t;)], (3.14) 

There is a model trajectory that gives the minimum of J; the initial state of this tra- 

jectory is designated x*(to)- In the case of a perfect model and observation, the model 

with initial condition x*(to) exactly predicts the observation: 

x^''^(t^)=7e(t/,to)x*(to). (3.15) 

The perfect model-data assumption clarifies the discussion, but is not necessary. Next, 

we wish to find the shape of the cost function around the minimum. 

Before proceeding, the tangent linear model is defined. A perturbed nonlinear model 

trajectory can be integrated with the formula (Miller et al. 1994): 

£[x(t) + 5x(t)] = £[x(t)] + i^^ '5x(t) + 5^{t? 
d'^c 

9x2 (t) 
5x(t) + ... ,      (3.16) 

where the second-order term contains a third-order tensor. Subtracting the baseUne 

nonlinear model trajectory and neglecting terms higher than order one, a perturbation 

to the state, <5x(t), follows the dynamics of the so-called tangent linear model: 

The matrix, djC/dx{t), is sometimes called the Jacobian matrix.   It is formed by the 
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derivatives of the nonlinear equations, £i, £2, etc., with respect to the state: 

/ 

[dx{t)) 

5£i/axi(t)    dCi/dxiit) dC,/d^{t) 

dC2/dXi(t)      dC2/dx2{t)     ...     dCi/diCrait) 

[d£m/dXj{t)     dCJdX2{t)     ...    dCm/d^{t)  j 

(3.18) 

x(t) 

The model is always re-Uneaxized about the changing model state, explicitly noted by 

the subscript x(t). Extending over many time steps, the final perturbation is related to 

the initial perturbation by 

<5x(ty) = R(i/,io)<5x(io), (3-19) 

where R is a linear resolvent made of a string of linear matrix multiplications. The 

validity of the tangent hnear model to approximate the nonlinear dynamics is addressed 

more fully below. 

The cost function. Equation (3.14), reduces to a quadratic form for linear models 

or for nonUnear models well-approximated by a tangent linear model (Figure 3-3, left 

side). 

J[x*(to) + <5x(to)]   =   [R(t/, to) 5^{tof [R(t/, to) <5x(to) 

=   <5x(to)^ R(t/,to)^R(t/,to) 5x(to) 

(3.20) 

(3.21) 

In contrast, the cost function is no longer globally quadratic and many local minima 

appear when the tangent linear model fails to well-approximate the nonlinear model. In 

that case, perturbations to the initial state are influenced by higher order terms. The 

cost function topology around the minimum is not purely quadratic: • 

J[x*(to) + <^x(to)] = <^x(to)^ R(t/,to)^R(t/,to) <Jx(to) + O(<5x(to)''") (3.22) 

where m includes integers gi-eater than one. Higher order terms destroy the parabolic 

nature of the function, and the original minimum is not necessarily unique. As seen in 
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this generic example, nonlinearity in a model is responsible for local minima. 

Form of the Cost Function: Linear vs. Nonlinear 

-2 
4 6 

U, the Control Variable 
10 

Figure 3-3: Schematic of the cost function with a linear versus nonlinear model. The lin- 
ear model (left) gives a cost function with paraboloidal shape because of the least-squares 
formulation. A nonlinear model (right) potentially gives a much more comphcated shape; 
discontinuities and multiple local minima are possible. 

The preceding section hints at the role of model dynamics in the least-squares prob- 

lem. Specifically, a nonlinear model can distort the simple, parabolic form of the sum 

of squares. However, the results of the previous section are strengthened by considering 

the physics of a simple dynamical system. The pendulum is chosen for study because it 

can be implemented as a nonlinear or Unear set of equations, and it can also be stable, 

unstable, or chaotic. 

3.3.2    Case study: Single pendulum 

Is it possible to determine the angle and velocity of a pendulum at initial time with one 

observation at a later time? Like the previous section, this is a statement of the recovery 

problem of control theory. The simple formulation of this problem isolates the effect 

of the model dynamics on the optimization problem. In this case, the damped, single 
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pendulum of fixed length is used (following the textbook of Baker and GoUub (1990), 

see Figure 3-4). The motion of the pendulum is described by the equation: 

d?6       de      .   ^    ^ 
- + q- + s^n9 = 0, (3.23) 

where 6 is the displacement angle from vertical and g is a damping coefficient. To 

numerically implement this system, the angular velocity, u, is included as part of the 

state and the system is discretized with a forward Euler timestep of time At The 

discrete-time state space realization is: 

^ u}{t + i^t)\      ( (1 - qAt) u{t) - At sin e{t) ^ 

^ 6{t + At) j \ Atuj(t) + 9{t) J 

The tangent linear model, according to Equation (3.18), is: 

/ 5u{t + At) \ 1 - qAt   -At cos d{t) 

At 1 \^ 5e{t + At) ) 

The cost function. Equation (3.12), is rewritten for the pendulum 

5u{t) 

se{t) 

(3.24) 

(3.25) 

obs/ J = [eitf) - e°'%tf)r + Htf) - u;<^''m (3.26) 

where 9°^^ and co"''^ are observations. We next consider the linear pendulum with stable 

and unstable dynamics, then contrast the cost function shape with stable and unstable 

nonlinear dynamics. 

Linear, stable pendulum 

Although the full equations of motion for the pendulum are nonlinear, a traditional 

approach is to make the small-angle approximation. The dynamics of the pendulum are 
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Figure 3-4: Diagram of the single pendulum. Large angles, d, are allowed in the nonlinear 
system. The pendulum has a massless rod of fixed length. 

linearized around the state of zero displacement, ^ = 0. 

oj{t + At) 

e{t + At) 

\ 

I 

^ l-qAt   -At 

At 

ojit) 

m) 
(3.27) 

Equation (3.27) is the discrete-time form of the continuous-time equation: 

cPe        de     ^     ^ (3.28) 

with the linear term of the Taylor series expansion, sin 6^6, replacing sine in the 

nonlinear equation (3.23). The linearized pendulum dynamics should not be confused 

with the dynamics of the tangent-linear model, although they are related. The linearized 

pendulum of this section is always linearized around zero displacement, but the tangent 

linear model is re-linearized around a changing nonlinear model trajectory. 

To examine the shape of the cost function, consider an "identical twin" experi- 

ment. The observation is generated by running the model with initial displacement of 

—7r/6 radians and zero velocity. Assuming a perfect model and observation, the shape 

of the cost function is generated by changing the initial conditions and evaluating J. 

One-dimensional sHces of the cost function are made by varying the initial displace- 

ment angle and by keeping the initial velocity fixed to zero. Regardless of the elapsed 
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time between the initial conditions and the observation, a sUce of the cost function is 

a parabola (Figure 3-5,upper left panel). The cost function becomes less steep if the 

elapsed time between initial and final time, tf - to, is increased. A fiat cost function is 

one where the model is relatively unconstrained. Thacker (1989) showed that the curva- 

ture around the minimum gives the uncertainty of the estimate; a deeper "hole" yields 

a more constrained estimate. In the pendulum example, the recovered initial conditions 

become more uncertain with time because of the dissipation of information by damping. 

The timescale of memory loss is roughly equivalent to 1/q, or 100 s, in this particular 

example. The cost function tends to zero everywhere for time integrations longer than 

the damping timescale. In summary, a linear model gives a paraboloidal cost function, 

leading to a straightforward search for the minimum unless the memory of the initial 

conditions is lost. 

The linearized pendulum has an equilibrium point at rest, ^ = 0, u; = 0. The 

system is stable^ if an arbitrary perturbation remains in a finite neighborhood of the 

equilibrium for all time and approaches the equilibrium as time goes to infinity. For an 

unforced, Unear dynamical model, x(nAt) = A'' x(0), decompose the initial state into 

the eigenmodes, gj, of A: 
M 

x(0)=^a,(0)g,, (3.29) 

where a{t) is the time-variable projection of the state onto a particular eigenmode, i. In 

the present case, the dynamical model does not vary in time, and hence, the eigenmodes 

are fixed. Therefore, the evolution of the state follows a simple modal form: 

M 

x(nAt)=^A>i(0)gi, (3.30) 
i=l 

where Aj is the z-th eigenvalue. Division of the last two equations, 

.^iM = A" (3.31) 

^Technically, this is the definition of asymptotic stability. 
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Linear, stable pendulum Linear, unstable pendulum 

:t=50S 

-7C/2 -TC/3 -7t/6 0     71/6   7C/3    7C/2 
e 

Nonlinear, stable pendulum 

I r=vJ 

-%/2 -7t/3 -7C/6 0   7i/6 n/3    ic/2 
0 

=0.5s 

-7C/2-7C/3-7l/6   0      7C/6   7t/3     71/2 
0 

Nonlinear, unstable pendulum 

-7t -27t/3 -7c/3 0    7t/3 271/3  Tt 
0 

Figure 3-5: Cost function with respect to the initial pendulum angle. A synthetic 
observation was made from a model run with intial angle, 6 = —7r/6. The time between 
the initial state and the cost function evaluation is 0.5, 5, or 50 seconds. Upper left. 
Linear, stable pendulum. Upper right Linear, unstable pendulum Lower left Nonlinear, 
stable pendulum. Lower right Nonlinear, unstable pendulum. Notice the wider scale 
for 6 in the lower, right panel. The pendulum's dynamical regimes are further explained 
in the text. 
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gives a stability criterion. Eigenvalues with magnitude greater than one grow expo- 

nentially with time. The discrete-time pendulum is stable for 0 < At < g. Without 

forcing, the pendulum returns to rest for all initial conditions. Due to stability, the cost 

function magnitude decreases with increasing integration time; in other words, all model 

trajectories eventually converge. The case where the model varies with time leads to 

a slightly different interpretation of the stability criterion, and is discussed later in the 

section on nonlinear pendulum dynamics. 

Linear, unstable pendulum 

To explore the impact of instabiUty, consider changing the sign of 9 in the linearized 

pendulum equation, which is equivalent to linearizing the inverted pendulum: 

Physical justification is not sought for this change, but it is a simple way to render 

the problem unstable. Eigenvalue analysis shows that one unstable mode is present. A 

typical observation provides a strong constraint to the initial unstable mode, because 

an error in that mode grows with time. Consequently, the cost function becomes in- 

creasingly steep as the time between initial and final time is lengthened. As seen in 

Figure 3-5 {upper right panel), the model initial conditions are well-constrained. The 

shape of the cost function is still parabolic, so instability does not impede the search for 

the minimum. 

The two previous examples with the linear pendulum appear straightforweird; how- 

ever, special situations should be mentioned. Parabolic cost functions with varying 

steepness in different directions result from ill-conditioned problems.' As mentioned in 

Section 3.2.4, searches may be inefficient in this case. An extreme example is that of 

the banana-shaped valley, in which steepest-descent methods fail. Sums of independent 

parabolic terms in a cost function may yield such complicated forms. Another problem 

which may occur in linear models is the non-computability of the gradient.   For the 



unstable model, gradients grow exponentially with time, and they may be too large 

to be computed by numerical means. To sunmiarize, linear dynamics, whether stable 

or unstable, give parabolically-shaped cost functions. In most cases, the search for a 

minimum of a paraboloid is efficient, but special circumstances do exist. 

Nonlinear, stable pendulum 

Stability of the nonlinear pendulum is determined by the Unearized dynamics around 

each point in phase space. A global measure of stability is no longer possible. Stability 

of the tangent linear model is interpreted as the convergence of neighboring nonlinear 

trajectories. For the pendulum, the tangent linear matrix has eigenvalues greater than 

one when linearized about a state in the upper-half plane {0 < —7r/2, 6 > ■7r/2, see 

Figure 3-6). Gravity accelerates a horizontal pendulum most strongly; in the upper- 

half plane, a pendulum perturbed towards the horizontal is more rapidly accelerated 

downwards: an unstable configuration. Conversely, the lower-half plane is stable. Even 

though the pendulum is not globally stable, the behavior of a stable, nonlinear model can 

be examined by looking at the lower-half plane alone. Hereafter, the nonlinear pendulum 

restricted to the lower-half plane is referred as the "nonlinear, stable pendulum." 

The cost function computed with the nonlinear, stable pendulum has four stationary 

points, two local maxima and two local minima (Figure 3-5, lower left panel). The only 

difference in the dynamics is a nonlinear term. Gradient search methods find the nearest 

minimum, but no clear test exists to distinguish the global minimum from a local one. 

This example shows that nonlinear models, even those that are stable, can create local 

minima. 

The tangent Unear model well-approximates the nonUnear dynamics for a limited 

amount of time, the nonlinear timescale (Gauthier 1992; Miller et al. 1994). For example, 

consider the dynamics of the pendulum from the starting angle of 9{to) = 37r/8, near 

a local minimum of the cost function. The pendulum trajectory can be computed by 

either the nonlinear model, or by the tangent Unear model around the trajectory with 

the correct initial angle, 9* (to) = —7r/6. After fifteen seconds, the tangent linear model 
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Phase Trajectory Largest Eigenvalue 

-n 

1.01 

71 -7C e % 

Figure 3-6: Characteristics of the nonlinear pendulum. Left. The nonlinear pendulum 
traces a damped quasi-periodic orbit in phase space. The pendulum was implemented 
with a timestep of 0.01 s and a damping coefficient of 0.01 s'^. Right The pendulum 
is unstable in the upper half plane where the magnitude of the greatest eigenvalue, |A|, 
exceeds one. In the lower half plane, the pendulum is stable (nearly neutral) with the 
largest eigenvalue just less than one. 

makes a different prediction than the nonlinear model (Figure 3-7). The inaccuracy of 

tlie tangent linear model has two causes. First, the pendulum frequency is a function of 

amplitude, but the tangent linear model is linearized around a trajectory with a smaller 

amplitude, and hence, an inaccurately-short period. Second, the tangent linear model 

predicts divergence of the two pendulums, as seen by the growth^ of the envelope of 

A^, even though two nonUnear trajectories converge. In summary, the length of time 

integration and the transient behavior of a system must be considered when assessing 

the validity of the tangent linear model. 

The preceeding section does not claim that the tangent linear model is incorrect. 

Instead, the validity of the tangent linear model depends upon the size of the initial 

perturbation. For a sufficiently small perturbation, the tangent hneax model does well- 

approximate the nonlinear dynamics; given the proper state to linearize about, the 

tangent linear model is successful. For the pendulum, the angle after fifty seconds is a 

^Perturbation growth occurs in the nonlinear pendulum despite asymptotic stability. The state 
transition matrix is non-self-adjoint, and non-normal growth (Farrell 1989; Farrell and Moore 1993) 
is possible. In this system, non-normal growth occurs because two pendulums with slightly different 
initial conditions go out of phase, leading to large differences. Over long time periods, the decaying 
amplitude of oscillations ceases the divergence of trajectories, and non-normal growth is seen to be 
transient. 
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Nonlinear Model vs. Tangent Linear Model 
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Figure 3-7: The difference of angle, A^, between two model trajectories as computed 
by the nonUnear model {solid line) and the tangent linear model {dashed line). The two 
nonlinear trajectories are started with initial angle 9{to) = -7r/6 and 9{to) = 37r/8. The 
tangent linear model is hnearized about the former trajectory. 

nonlinear function of the initial angle (Figure 3-8). The tangent-linear model is valid 

for an exceedingly-small region around ^(to) = -7r/6. In this small region, the cost 

function, according to arguments in Section 3.3.1, is locally parabolic. 

Nonlinear, unstable pendulum 

As mentioned above, the nonlinear pendulum is stable in the lower-half plane, and 

unstable in the upper-half plane. With initial conditions in the upper-half plane, the 

pendulum trajectory is episodically-unstable. For simplicity, any pendulum that enters 

the upper-half plane at any time is called a "nonUnear, unstable pendulum." A slice of 

the cost function contains many local minima with fifty seconds of elapsed time between 

initial and final state (Figure 3-5, lower right panel). Instability of the model dynamics 

is not a prerequisite for the emergence of local minima, but it exacerbates the problem. 

Neighboring nonlinear trajectories diverge in time, and knowledge of the correct state for 

linearization of the tangent linear model is lost with time. For the nonlinear, unstable 

pendulum, gradient search only yields the global minimum for short time intervals or 

with an excellent first guess. 
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Figure 3-8: Pendulum angle at time t/ = 50 s as a function of initial angle. The 
function is computed by the nonlinear dynamics {solid line), and by the tangent linear 
model about the trajectory with initial angle, ^(to) = —7r/6 [dashed line). 
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Figure 3-9: The form of the cost function of the pendulum with fifty seconds of elapsed 
time between initial conditions and the observation. The cost function is computed with 
both the nonlinear and linear model. Fifty seconds exceeds the nonlinear timescale, so 
local minima appear in the cost function. 
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Nonlinear, chaotic pendulum 

With the addition of forcing, the single pendulum is chaotic in certain parameter ranges 

(see Appendix B for the equations of motion). Nonlinear, chaotic pendulums are a 

subset of nonlinear, unstable systems. The short-time dynamical behavior of the two 

classes of models are identical for our purposes. However, differences appear in the 

long-time behavior. Gradients of nonlinear, unstable models tend to zero with damp- 

ing. In contrast, gradients computed by nonlinear, chaotic models grow exponentially 

for an indefinite amount of time despite damping. Therefore, sensitivity analysis with 

long-time integrations of nonlinear, chaotic systems have two problems: the potential 

non-computability of very large gradients, similar to unstable, linear models, and the 

emergence of many local minima, as seen in many nonlinear models. 

3.3.3    Models with thresholds 

Nearly all numerical models have thresholds due to physical or numerical reasons. Nu- 

merical programs necessarily include many switches, such as conditional if statements. 

One ocean process that depends upon a threshold is convection. To examine the impact 

of model thresholds on a cost function, consider a water column undergoing cooling at 

the surface (Figure 3-10, left panel). The simplest, discrete representation of the vertical 

stratification has two components, surface density, pi, and abyssal density, p2- In a nu- 

merical model, convection is typically implemented as two-step process. First, cooling 

is applied to the surface. 

Pi(io + l) = Pi(io) + Q, (3.33) 

P2(to + 1) = p2{to), (3-34) 
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where Q is surface forcing. Second, if the surface density is greater than or equal to the 

abyssal density, the ocean convects and subsequently mixes. 

i^ Pi(to + 1) > p2{to + 1) 
Pi (to + 2) = (pi(to + 1) + p2(to + l))/2 

P2(to + 2) = (pi(to + 1) + P2(«0 + l))/2 
(3.35) 

where the arrow represents fulfillment of the conditional statement.  If the column is 

gravitationally stable, no convection happens. 

else if I pi (to + 1) < p2(to + 1) 
Pi(to + 2) = pi(to + l) 

p2(to + 2) = P2(to + 1) 
(3.36) 

Suppose an observation of the abyssal density is available at time to + 2.  Then, the 

squared data-model misfit is: 

J = [p2(to + 2) - Pobsf (3.37) 

The goal of the toy example is determine the correct amount of cooling in order to 

Qt 
Pi 

P2 

Cost function with threshold 

V No 
convection 

Q 

Figure 3-10: Left panel: Schematic of an oceanic water column with upper density, pi, 
and abyssal density, P2- Cooling, Q, is applied to the surface. Right panel: Data-model 
misfit as a function of cooling. Two dynamical regimes are present: a non-convective 
regime {left half), and a convective regime {right half), which greatly affect the cost 
function form. 
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reproduce the observed abyssal density. The cost function value with respect to cooling 

shows the impact of the threshold in the model dynamics (Figure 3-10, right panel). 

Cooling affects the observational site only when convection is happening. Therefore, the 

gradient in the non-convective regime is zero, and is very different than the gradient in 

the convective regime. 

This example illustrates that the gradient information is local, and may not accu- 

rately predict the value of the cost function with a finite perturbation to the controls. 

Sensitivity studies, where only one adjoint calculation is performed, get only a linear 

picture of the model dynamics, and their applicability may be limited in a highly non- 

hnear model. In the minimization context, gi'adients are calculated at many different 

points in phase space, yielding some overlying picture of the nonlinearity of the model 

dynamics. Due to this fact, dynamical regime shifts are not expected to be a major 

problem in finding a solution to the least-squares problem here. 

DifFerentiability of model dynamics 

The cost function presented above has one special point at the threshold between the 

convective and non-convective states. This forces one to consider the differentiability 

of the model dynamics. Some investigators call any conditional statement nondifferen- 

tiable, but the previous paragraph shows that such statements can usually be handled by 

accurate linearization. With chaotic models, very large gradients have been attributed 

to nondifferentiable dynamics (Kohl and Willebrand 2002). Formally, there is a distinc- 

tion between unstable and nondifferentiable dynamics. Unstable (or chaotic) dynamics 

are differentiable provided that the local neighborhood of examination is small enough. 

Machine precision is an eventual limit, at which point an unstable model is indistinguish- 

able from a nondifferentiable system within numerical accuracy. Here, we use the formal 

definition of nondifferentiability. A numerical model statement is symbolically written, 

Xcmt = gi^in), where g can be a nonlinear function, and Xin and x^t are continuous 

scalars. If [dg/dxin]xin do^s not exist, then the model is said to have a nondifferentiable 

point at Xi„. 
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For the convective water column example, the gradient of the cost function with 

respect to the cooling is examined through the chain of model steps. Following the ideas 

of Marotzke et al. (1999), the cost function is written as: 

J = / o £1,2 o £0,1 o x(to) = /(£i,2(/:o,i(x(to)))) = /(^i,2(x(to) + bg)) (3.38) 

where / maps the final state onto a scalar, o is the composition operator, Ctut2 represents 

the model step from t = ti to t^, x(to) is the initial state, and b is the column vector, 

[1 , 0]^. The derivative of the cost function with respect to Q is determined by the 

chain rule: 

^ = /'(£U(x(to) + hQ)') = /'(£i.2(b)). (3.39) 

The derivative of f with respect to the state, /', is [0 , 2(p(to + 2) -po6s)], a well-defined 

quantity for all reasonable values of abyssal density. Likewise, the column vector, b, is 

well defined. However, the tangent-linear model, £', depends upon the physical regime 

for linearization. For all convecting states, the tangent linear model is: 

A,2=     ^'^   ^'^   \. (3.40) 
Vl/2   1/2; 

On the other hand, the tangent linear model for nonconvecting states is: 

= I. (3.41) 

Evaluation of the gradient is now a series of vector and matrix multiplications. There is 

a particular amount of cooling, Qthreshoid, which leads to a homogeneous water column 

at t = 1, i.e. pi(to + 1) = P2(to + 1)- For an infinitesimal perturbation of cooling, 

Q = Qthreshoid + e, the gradient of the cost function is: 

d£ 
dQ 

1/2   1/2 \ 
[0  2(p2(to + 2) - Pobs)\ \ [10]^ = P2(to + 2) - Pobs-      (3.42) 

1/2   1/2 ] 
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Approaching the threshold from the nonconvecting side, 

1  o\ dJ_ 
dQ 

[0 2(p2(to + 2)-Po6s)] [1  Or = 0. (3.43) 
0   ij 

Because the two Umits do not agree, the gradient does not exist at this point. Differ- 

entiabiUty has meaning in this discretized model because the density is expressed as a 

continuous variable. On the other hand, the derivative of the state with respect to time, 

dpidt, or the vertical gradient of density, dp/dz, can not be well-defined in a continu- 

ous sense. To summarize, the convection threshold represents a nondifferentiable point, 

because the gradient does not formally exist. 

Models with thresholds open the possibility that the gradient of the cost function 

may not exist at a point. However, the probability of landing exactly on this threshold is 

formally zero, because the forcing and the cost function are continuous scalars (Griewank 

2000). In addition, the automatic adjoint code generator (TAF) still computes gradients 

at the nondifferentiable point, which axe equivalent to one-sided gradients. The adjoint 

compiler handles conditional statements in the same way as other nonlinear statements 

- with Unearization around the full forward model trajectory. Despite the formal diffi- 

culties with nondifferentiable points, they have not posed a problem in practice to this 

date. 

Summary of the influence of model dynamics on J 

• Nonlinear model dynamics give rise to the possibility of local minima in the cost 

function, and hence, multiple solutions. 

• Local minima in the cost function are possible in nonlinear systems with locally- 

unstable trajectories, or even in a stable nonlinear model with transient growth of 

perturbations. 

• A dynamical regime shift, such as those caused by model thresholds, is a situation 

where the adjoint-computed gradient differs from a finite-difference approxima- 
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tion.  This is a problem for sensitivity studies, but is not a major deterrent for 

minimization of a cost function. 

3.4    Coarse-resolution optimization 

This study begins with a coarse-resolution state estimation problem for two reasons: to 

test the numerical machinery, and to potentially use the result as a new best guess for the 

eddy-resolving calculation. State estimation with a coarse resolution ocean model avoids 

many of the problems of an eddy-resolution estimate because the model is quasi-linear 

and the control space is much smaller. Table 3.1 summarizes the differences in the 2° and 

1/6° estimation problems. The large values of friction necessary to numerically stabilize 

a coarse resolution model make the dynamics quasi-linear. Coarse resolution models have 

been brought into consistency with data by a number of past investigators (Marotzke 

and Wunsch 1993; Stammer et al. 2002). Computationally, the 2° estimation problem 

consumes a relatively small amount of resources. Large-scale biases in the forcing and 

regional model inadequacies can be accounted for in the coarse-resolution estimate. 

Correction of the biases is much more computationally efficient at coarse resolution. In 

summary, coarse resolution state estimation with the regional model takes a relatively 

small effort, but the potential benefits for the fine resolution estimation problem are 

great. 

To implement the coarse-resolution regional estimate, all external forcings and bound- 

ary conditions are taken from the ECCO global estimate with the same resolution. The 

time period of the coarse-resolution estimate is identical to the fine-resolution one: June 

1, 1992, to June 1, 1993. The cost function has the same form (Equation 2.1) as the 

fine resolution problem, but the weights are changed. A coarse-resolution model does 

not resolve motions at scales less than the grid spacing, and such information in the 

observations must be considered noise. The Zang-Wunsch spectrum is used to predict 

the energy at scales less than 400 km, the sub-gridscale and the diffusively-dominated 
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2° 1/6° 
Horizontal Resolution (167-218) km X 222 km (14.2 - 18.2) km x 18.5 km 
Grid Points 20 X 16 X 23 vertical levels 192 X 168 X 23 vertical levels 
Time Step 3600 s = 1 hr. 900 s = 15 min. 
Lap. Horiz. Viscosity 5x10^ m^/s 0 
Lap. Horiz. Diffusivity 1x10^ m'^/s 0 
Biharmonic Horiz. Vis./Diff. 0 2x10^^ m'^/s 
Vertical Viscosity 1x10-3 ^2/5 1x10-3 ^2/g 
Vertical Diffusivity 1x10-5 ^2/5 1x10-5 ^2/3 
Reynolds Number ^1 «25 
State Vector 1.70 X 10^ elements 3.14 X 10^ elements 
Control Vector 9.11 X 10^ elements 5.49 X 10^ elements 
Model Input 7.68 X 10^ forcing elements 7.98 X 10''' forchig elements 
Model Output 1.50 X 10^ estimated elements 1.09 X 10" estimated elements 
Processors 1 processor 24-48 processors 
Computational Time 2 cpu hours/iteration 400 cpu hours/iteration 
Search Iterations ^ 40 iterations Ri 120 iterations 
Total Computer Time fa 80 hom-s (2.3 days) ^ 50,000 hours (5.7 yeai's) 

Table 3.1: Coarse and fine resolution state estimation 

range near the gi'id spacing. Below 400 km, the model wavenumber spectrum is too 

steep; power decreases with wavenumber too rapidly due to the diffusive nature of the 

model. To restate, the same observations ai'e used in both estimates, but much larger 

misfits are acceptable in the coarse-resolution problem. The coarse-resolution state esti- 

mate here differs from the ECCO estimate for two primary reasons: the open boundary 

formulation of the model, and the inclusion of new Subduction Experiment data in the 

cost function. The result, detailed below, is a regional state estimate at coarse resolution 

which is significantly improved for oiu' particular study. The estimate is then used for 

the fine resolution problem by a hnear-interpolation onto a finer grid. 

The method of Lagi'ange multipliers brings the ocean circulation within observational 

uncertainty in fifty iterations of the forward and adjoint models (see left panel, Figure 3- 

11). Therefore, the control parameters chosen in Chapter 2 are capable of controlling 

and changing the interior ocean circulation. Furthermore, fifty iterations is extremely 

efficient considering the control vector of 100,000 elements (i.e., Niterations « Ncontrois)- 

The successive updates of the controls further illustrates the efficiency of the optimiza- 
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tion. The control vai'iables quadratically converge upon the minimum of the cost func- 

tion subject to the coai'se resokition model (right panel, Figure 3-11); this is the theoret- 

ical rate of convergence for the quasi-Newton method with a parabolically-shaped cost 

function (Press et al. 1992). Indeed, when the two panels of Figure 3-11 are combined, 

the shape of the cost function in control space is a parabola (Figure 3-12). This topology 

is expected for a diffusive coarse-resolution ocean model. The solution for the control 

variables is within the prior estimated range of uncertainty. It is not surprising that the 

method works so well for a coarse resolution model, because it is a neai-ly-linear system. 

Squared Model-Data Misfits: 2 Optimization Size of Controls ||u|| : 2 Optimization 
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Figure 3-11: Left panel: Normalized model-data misfit as a function of iteration of the 
search method. A value of 1 (10°) is expected. Irregularities are caused by improvements 
and changes in the numerical code; for example, the increase in the mooring temperature 
misfit occurred when the data-model mapping was improved in the numerical code.Right 
panel: The size of the control adjustments, ||«|p, for the same experiment. 

3.4.1     Coarse-resolution misfits 

The simulation with zero control adjustments has several large-scale hydrographic defi- 

ciencies which require adjustments in the controls. Sea surface temperatures approach 

35°C in the northern basin (30-40°A/"). A southward shift of the semi-permanent Azores 
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Figure 3-12: Magnitude of the cost function with respect to the size of the control 
adjustments. 55 cost function evaluations are plotted with "X"'s. A half-parabola 
emerges, consistent with a quasi-linear model. Irregular points are present because 
changes were made in the cost function weights. 

High, with associated heat flux changes of 50 W/wz^, cools summertime SST's in this 

region. Overly-warm sea surface temperatures are also associated with a weakened Ca- 

naries Current in the simulation. The optimization shifts the open boundary southern 

velocity from north to south m order to accommodate more cold water advection along 

the coast. Abnormally warm SST is a ubiquitous problem of the ECCO state estimate^. 

Another major deficiency of the simulation is the meridional slope of the winter mixed 

layer base; the mixed-layer deepens to the south, reaching a depth of 220 m, at 22°A''. 

Observations and climatologies alike show that the mixed-layer shoals equatorward, a 

crucial feature for subduction (Woods 1985; Marshall et al. 1993). The western bound- 

ary fluxes too much heat away from the eastern subtropics between 20 - 30°A^. The 

optimization responds by both warming the western boundary at these latitudes, and 

by decreasing the westwai-d exit flow. The optimized estimate of mixed-layer depth then 

shoals towards the south, and never reaches a depth greater then 170 m, in close ac- 

''Here, we have used the original ECCO state estimate from the adjoint method, 1992-1997. Later 
estimates do not have the same preponderance of overly-heated sea surface temperatures (D. Stammer, 
pers. comm.) because of the addition of an explicit boundary layer scheme. 
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cordance with observations. Analysis of the individual misfit terms in the cost function 

further substantiates the large-scale deficiencies of the model. 

Mooring misfit: 2° 

Estimated temperature at the mooring sites reflects gradual cooling of the sea surface 

and subsequent deepening of the mixed-layer in winter, as observed. Simulated (no data 

constraint) temperature is deficient in many ways: an overly-deep mixed-layer, mistimed 

winter onset, and a too-weak seasonal cycle. The estimate adjusts the large-scale heat 

budget of the ocean ocean to improve the characteristics of the seasonal cycle. Mooring 

temperature is shown to be controllable in this study; upper ocean measurements are 

used which are used to directly estimate changes in surface forcing and initial conditions. 

Deep hydrographic measurements may not be controllable because of the long times 

needed for surface signals to propagate to the deep ocean. This question is open for 

future research. 

TOPEX/POSEIDON misfit: 2° 

TOPEX/POSEIDON satellite altimetry is unique in this study in that the observational 

uncertainty rivals the dynamical signal. For example, the background variability in this 

region approaches 10-20 cm but the noise is around 5 cm. For this reason, the maximum 

misfit of the model is bounded at a fairly small value relative to the other data types. 

When considering only the large-scale observational signal, 58% of the SSH variance 

is noise because it is at wavelengths less than 400 km. The original SSH anomaly 

misfit is 30% greater than the expected value, but changes in the large-scale structure 

bring the estimated surface height field into consistency. The SSH mean field from 

TOPEX/POSEIDON is also used. It is also a relatively weak constraint on the model 

dynamics because of the uncertainty of the geoid at high wavenumbers. The general 

circulation model is consistent with the observed SSH mean field for all control variable 

values used here. 
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Climatological misfits: 2° 

Ocean climatologies are difficult to fit, even within their larger uncertainty. For exam- 

ple, the state estimate differs from Levitus climatological temperatures in the eastern 

boundary current region off of Africa and the Iberian Peninsula. Iterations of the for- 

ward/adjoint model bring the estimate closer to the Levitus climatology, but not into 

complete statistical consistency. This is not because the clunatology has been down- 

weighted too much; numerically, its contribution to the cost function is the lai'ger than 

all other terms. Inconsistency between the Levitus climatology and other datasets is 

not implied, as the a priori tests of Section 2.2.3 dismiss such a possibihty. The last 

possibility is that the Levitus climatology is inconsistent with the equations of motion. 

Because it is a long-term, time-mean statistical average of various data sources, the 

latter explanation seems most likely. 

A strict comparison of the modeled temperature and Reynolds SST data reveals 

inadequacies in the model dynamics. Surface layers of the model are too waim in 

the summer because the seasonal mixed-layer is not deep enough (Figure 3-13). The 

KPP boundaiy layer model pai'ameterizes wind-stirred deepening of the mixed-layer, 

but does not flux enough heat downwai'ds. Summertime errors ai'e evident in the biased 

histogram of the model-data misfit. For statistical rigor, Gaussian errors are assumed, 

but inadequacy of the model dynamics breaks this posterior test. The standai'd deviation 

of the SST misfit is also slightly lai'ger than the expected value, which is measured by 

the cost function. This paragraph is a call for model improvement. 

3.4.2    Coarse-resolution control adjustments 

Which controls are most important to bring the model into consistency with the ob- 

servational signal? The gradient of the cost function with respect to the controls gives 

a quantitative answer. After nondimensionalizing each gradient bj^ its data type and 

depth, the initial temperature and open boundaiy conditions are most important over 

the first year of integration. The memory of initial conditions extends well beyond 

one year — both foi'ward model studies (Griffies and Bryan 1997) and adjoint studies 
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Figure 3-13: Top panel: Standard deviation of SST misfit as a function of month. Lower 
panel: Histogram (blue) of SST misfit, and the assumed prior error statistics {red line). 

(Bugiiion 2001) have shown a memory of at least ten years in the upper ocean. 

Previous state estimation studies have seen the emergence of spurious small-scale 

noise in the control adjustments (Zhang and Marotzke 1999), but this is not a problem 

with the formulation here. The open boundary temperature and normal velocity fields 

play a similarly important role in controlling the ocean circulation. 

Control Statistics 

To satisfy a priori assumptions in the cost function, the magnitude of the control ad- 

justments must be within an expected range. For uncorrelated control adjustments with 

a Gaussian distribution and a standard deviation of one, the squared controls should 

follow a chi-squai-ed (xi) distribution with one degi'ee of freedom (Wunsch 1996). The 

control adjustments for the eddy-resolving state estimate follow a chi-squared distribu- 

tion, but are more strongly clustered around zero (Figure 3-14). This suggests that the 

controls are correlated, which is reasonable based on knowledge of typical geophysical 
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Figure 3-14: Distribution of squared control adjustments. The binned controls [hlue] 
are compared to the prior error statistics, a chi-squai'ed distribution with one degree of 
freedom {hlack line). The controls ai'e correlated because the binned distribution is more 
strongly clustered around zero. Based on the knowledge of typical geophysical fields, 
the control variables should not be completely independent, and the posterior test seems 
acceptable. 

fields. Atmospheric forcing fields, for example, should be correlated at lai'ge length- 

scales primarily due to the larger Rossby radius of deformation in the atmosphere. In 

conclusion, this posterior test successfully shows that the control adjustments have a 

reasonable size. 

3.5    Fine-resolution optimization 

Spatial resolution determines the degi-ee of nonlineaiity in many oceanographic models 

because frictional coefficients can be made smaller with higher resolution. Therefore, 

high-resolution simulations typically have a more-realistic Reynolds number and more- 

nonlinear dynamics. The arguments of Section 3.3 show that multiple solutions to the 
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least-squares problem are more likely to exist in this case. Multiple minima were seen 

in small-dimensional geophysical systems, like that of Ghil et al. (1991). In a quasi- 

geostrophic, three-layer double gyre model, the resolution du-ectly affected the shape of 

the cost function (Kohl and Willebrand (2002), Figure 3-15). Coarse resolution models, 

which are nearly hnear due to high viscosity, produced cost functions with a parabohc 

shape, but the high-resolution counterpait was uTegulai'ly shaped. Studies with geo- 

physical turbulence (Tanguay et al. 1995) showed that small scales, where frequencies 

are highest, ai-e likely to be most nonlinear in geophysical phenomena. Dynamics of 

different ocean regions also have distinct levels of nonlinearity. Assimilation of Gulf 

Stream eddies was successful over a three month window, but the optimization diverged 

for longer times (Schroter et al. 1993), which the authors prescribed to the model becom- 

ing "more nonlinear" with time. Prior to this thesis, the prospects for state estimation 

in the eastern subtropical gyre were unknown. 

3.5.1     Chaos in geophysical systems 

The quasi-geostrophic basin model of Lea et al. (2000), and the'primitive equation 

model of Kohl and Willebrand (2003) were nonlinear and chaotic. Long time integra- 

tions reveal the differences between nonchaotic and chaotic nonlinear models. Nonlinear 

models generally lose sensitivity to initial conditions with increasing time, but chaotic 

models are exceptions. In addition to many local minima, cost functions from chaotic 

models behave like a discontinuous function (a Weierstrass function, McShane (1989)). 

Gradients do not give any useful information for a finite-sized neighborhood of phase 

space. Sensitivity of the initial conditions of a chaotic model remains indefinitely, but 

the conditions themselves ai-e unrecoverable. For a successful optimization, long time 

integi'ations of chaotic models must be avoided. 

Chaos in the Northeast Atlantic regional model? 

A prerequisite for nonlinear chaos, as defined by Lea et al. (2000), is a model with insta- 

bility. The Subduction Experiment region has relatively low levels of eddy energy and 
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Figure 3-15: Cost functions from a fine and coarse-resolution quasi-geostrophic double 
gyi-e model with three levels. The cost function is the SSH misfit as a function of changes 
in the wind stress. The inference is that the 1/6° model is highly nonhnear. Prom Kohl 
and Willebrand (2002). 
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no western boundary currents; both imply a more linear dynamical regime. The general 

circulation model of this thesis is nonlinear and episodically unstable, as seen in two 

time integrations of the GCM with a small pertm-bation (Figure 3-16). A slight change 

in the control parameters leads to quasi-linear divergence of the model trajectories in 

phase space. 50-day episodes of exponential divergence suggest weak instability. Baro- 

clinic instability is an intrinsically unstable element of ocean models which can explain 

the results here. With the weak nonlinearity of the Subduction Experiment region, it is 

unknown if the shape of the cost function with the eddy-resolving model is smooth or 

irregular. 

Divergence of Phase Space Trajectories 

Figure 3-16: Two nonlinear integrations of the Subduction Experiment with a small 
perturbation to the control variables. The divergence between the two trajectories is 
defined as the sum of the squared difference in sea surface height, Yl^'^(SSHi — SSH2y. 
Exponential divergence occurs in short episodes, but the overall character is quasi-linear. 

A direct check for the presence of chaotic dynamics can be done through the adjoint 

model. The adjoint model calculates the sensitivity to initial conditions; chaotic models 

have sensitivity which grows exponentially with increasing integration time. The time 

evolution of the Lagrange multipliers gives the time-evolution of the sensitivity. As 

shown in Section 3.2.5 and Appendix B, the Lagrange multipliers represent the sensi- 
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tivity to the model state at that particular time. Hence, the Lagrange multipliers three 

months before the final time represent the sensitivity of the initial conditions of a three 

month integration. The adjoint model has the same stability characteristics as the tan- 

gent linear model because the eigenvalues of a matrix and its transpose are the same. 

The reverse-time evolution of the Lagrange multiphers reflects this symmetry. The time 

evolution of the Lagrange multipliers of the regional GCM do not grow exponentially 

with time, instead they saturate in less than a year (Figure 3-17). The adjoint model 

is therefore stable over long time integrations and the dynamics of the system are not 

chaotic. For reference, the Lagrange multipUers of the episodically-unstable nonlinear 

pendulum have the same behavior (Figure 3-18). Based on this evidence, chaotic dy- 

namics are not present in the Subduction Experiment model and the gradients of the 

cost function are calculable for long time integrations. 

As previously mentioned, gradients computed from chaotic ocean models (Lea et al. 

2000; Kohl and Willebrand 2003) had limited utility because of the nearly-discontinuous 

form of the cost function. Is the gradient, as computed by the eddy-resolving adjoint 

model of this study, relevant for finite perturbations of the control vector? This is a 

necessary condition for the gradient search method to succeed. The first iteration of the 

optimization can be used as a gradient check. By a Taylor series expansion: 

J(u) - J(u(°))  = VJiu^'Y (u - u(°)). (3.44) 

The approximation potentially fails due to the parabolic and higher order terms in the 

cost function (Equation (3.8)), and also due to discontinuities in the neighborhood of 

u(°). Also, use of a very small perturbation will be inaccurate due to cancellation errors 

and loss of significant digits (Griewank 2000). Using the first gradient, first cost function 

value, and a small perturbation of the controls, the expected cost function is calculable 

by (3.44). Then, the new controls ai-e used to complete an integration of the nonlinear 

model and check the correspondence. Here, errors are usually 1%, although occasional 

point error values up to 50% occur. They are attributable primarily to the curvature 

of the cost function.   Errors of this magnitude are acceptable, as the purpose of the 
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Figure 3-17: The evolution of the Lagrange multipliers (adjoint state) of the GCM 
with reversed time. The Lagrange multipliers are interpreted as the sensitivity of the 
initial conditions to a time integration of specific length. Both the maximum Lagrange 
mulitplier, ||/i(t)||oo, {solid line) and average magnitude of the Lagrange multipliers, 
||jLi||2, {dashed line) are plotted. 

Nonlinear pendulum: Lagrange multipliers 

Seconds 

Figure 3-18: The evolution of the Lagrange multipliers of the nonlinear pendulum with 
reversed time. Here, the maximum Lagrange multiplier, ||/i(t)||oo, is plotted. The time 
evolution is not as steady as the GCM because no spatial averaging is possible with the 
nonlinear pendulum. 
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gradient is simply to point downhill. Exact gradient values are not necessary as long 

as a minimum is ultimately found. A successful gradient check shows that the eddy- 

resolving model of this region avoids some of the problems of previous chaotic models. 

Another check of the gradient information is qualitative: does it look physically 

reasonable? In most cases, the gradients carry the signature of an adjoint Rossby wave 

traveling towards the eastern half of the basin. In addition, baroclinically-unstable 

bands appear to be more important, as inferred by Galanti and Tziperman (2002). This 

argument gives faith that the numerical machinery is accurately implemented. 

In summary, the gradients calculated from the regional GCM contain useful informa- 

tion, but the cost function may have more than one stationary point. Therefore, local 

minima in the cost function still represent a concern which can slow or stop the conver- 

gence to an adequate solution to the least-squares problem. Because gradient descent 

finds the nearest minimum, the first-guess set of controls is extremely important. To 

remedy the possible convergence to an inadequate local minimum, the first guess of the 

controls comes from a regional, coai-se resolution state estimate. Although the dynamics 

of the fine''' resolution model are different, the coarse resolution estimate is expected to 

have some skill in predicting the ocean observations. 

3.5.2    The first guess 

Application of the 2° control adjustments to the 1/6° problem is hypothesized as a 

way to make a good first guess. But, do the coarse-resolution controls improve the 

eddy-resolving model? Two eddy-resolving model trajectories are compared: a run 

with zero control adjustments and another with coarse-resolution estimated controls. 

A comparison of the two cost function values (Table 3.2) shows the improvement by 

the coarse-resolution controls. These adjustments decrease the total observational cost 

function elements by 3%, primarily by bringing the model closer to the Levitus cli- 

matological temperature and Reynolds SST. This is a statement that the predictions 

'^Fine resolution and eddy resolution are used interchangeably to identify the 1/6° model and esti- 
mate. 
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Cost Function Element Simulation Coarse-resolution Controls 
Mooring Temperature 2.24 2.01 
Mooring Velocity 0.98 1.02 
SSH Anomaly 1.32 1.24 
SSH Mean 1.01 0.94 
Levitus Temperature 2.06 1.82 
Levitus Salinity 0.76 0.76 
Reynolds SST 6.30 3.67 

Table 3.2: Squared misfit of cost function terms normalized by their expected value. 
The expected value is computed by treating all small-scale motions as noise. Here, the 
comparison is made between two integrations of the eddy-resolving model, one with zero 
control adjustments (Simulation), the other with controls estimated from the coarse- 
resolution model (Coarse-resolution controls). 

made by the coarse resolution model do carry over to the eddy-resolving case, and that 

the eddy-resolving model has some elements with quasi-linear dynamics. On the other 

hand, improvement of only 3% shows that the eddy field is still not simulated within 

observational uncertainty. 

3-5.3    Fine-resolution cost and controls 

Starting from coarse-resolution controls, the method of Lagrange multipliers is then 

applied to the eddy-resolving model. Improvement of the model trajectory comes at a 

slower pace due to the increased search space dimension. Nevertheless, the first-guess 

model run is near to the observations at the beginning, less than thirty iterations bring 

the large-scale state estimate within expected errors (Figure 3-19). The expected errors 

here include the entire eddy field; the observational terms are therefore downweighted. 

The first goal is to determine if any solution exists to the least squares problem. The 

solid red line reaches the normalized value of J = 1, corresponding a root mean square 

error that is equal to the a priori expected error. Therefore, the optimization finds a 

reasonable solution to the least-squares problem. 

The fine-resolution optimization of the previous section fits the model to the large- 

scale data sig-nal. In this case, mooring velocities offer much less information content 
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Figure 3-19: Normalized model-data misfit as a fmiction of iteration of the search method 
for the coarse and eddy-resolving optimization. A value of 1 (10°) is expected. 

than the temperature profile. Velocity has a bluer spectrum than temperature, hence, 

much of the variability in velocity is explained by small-scale processes. Unresolved 

processes are considered noise here; in total, almost 50% of the signal in the velocity 

measurements is neglected here. Therefore, mooring velocities are a weak constraint 

which is easily predicted within observational uncertainty by the model. As seen here, 

the mooring temperature observations ai'e much more valuable for constraining the large- 

scale cu'culation than point-measurements of velocity. 

Fine-resolution controls 

It is emphasized that the methodology here estimates all the control variables simultane- 

oushj, and no special means ai'e necessary to control the open boundaries. This difference 

to the recent work of Ferron and Marotzke (2002) may be due to a better decomposition 

of open boundary velocity. The ill-conditioning present in open boundary estimation (as 

discussed in Section 2.4.2) is a possible cause for slow or stalled covergence to a solution. 

Much like the coarse-resolution experiment (pictm-ed in Figure 3-11), adjustments 
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rnitial Temperature Adjustment, 310 meters, lter.113, [C] 

"Til 
Iberia In 

Figure 3-20: Initial temperature adjustment to bring the eddy-resolving estimate into 
consistency with the large-scale observational signal. 

to the initial conditions and open boundaries have the most influence on the ocean 

circulation over one year. The estimated adjustment to the initial temperature is large- 

scale, and has a reasonable magnitude relative to the interannual variability of the ocean 

(Roemmich and Wunsch 1984) (Figure 3-20). The strong hifiuence of the open boundaiy 

conditions is seen in a dye-release experiment in the forward model. Dye is constantly 

added at the lateral boundaries and allowed to advect and diffuse away. The result 

(Figure 3-21) is that almost half of the domain is affected by the boundaries in one yeai-. 

Extrapolation suggests that the entire region would be covered by the passive tracer 

within three to five years. Therefore, the strong influence of the open boundary controls 

is expected. 

Pitfalls in eddy-resolving optimization 

Figure 3-19 shows a nearly monotonic decrease of the cost function with iteration. How- 

ever, many intermediate steps failed due to numerical and physical problems; they are 
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O.B. Tracer, 65 meters depth, 12 months -3i 

30°W        24°W        18°W 

Figure 3-21: Tracer concentration [m~^] at 65 meters depth of a passive dye constantly 
released from the open boundaries with concentration 1 ?n~^. This snapshot is taken 
one year after the initial release of dye. The contour interval is 0.1 m~^. 
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catalogued in this section. Special cases arise when the gi-adient computed by the eddy- 

resolving adjoint model is less useful. The adjoint of the KPP boundary layer model 

is troublesome in shallow water and at depth due to the shear instability term. The 

solution here is to only use KPP in the forward model in the boundary layer, and to 

avoid simulating the shelf circulation. Also, the Hessian information calculated from the 

gradients is frequently not useful. For this reason, a steepest descent method periodi- 

cally works better than the full quasi-Newton method. This is a clue that the underlying 

cost function topology is not well-represented by a paraboloid, in effect the topology is 

irregular-. Most of these problems, now knoum, can be avoided in future optimizations. 

3.5.4    Cross-validation 

A stringent posterior test is to compare the state estimate with observations that were 

withheld from the optimization. Cross-validation tests the model's ability to be a dy- 

namic interpolator: Is information accurately caiiled away from the observational sites? 

WOCE hydrographic sections exist in the same region and time as the Subduction Ex- 

periment. The WOCE ARll section along 33°W was completed in November, 1992 

(P.I. Joyce). The transect passes the western moorings at 19°A^ and 33°A^, but nearly 

1500 km of ocean without hydrogi'aphic measurements separates the two. 

The differences between the model simulation and the state estimate are biggest in 

the upper 100 meters (Figure 3-22). Because of the changes in upper ocean structure, 

the mixed-layer depth is deeper by 50-100 meters in the state estimate. The hydrogi'aphy 

in other ptu-ts of the region also differs greatly between the two model runs. Mixed-layer 

depth is an essential quantity for subduction and must be modelled accurately to give 

any confidence in estimated subduction rates. 

The state estimate visually appears to reproduce the observations to a greater extent, 

and error estimates confirm this assertion (Figure 3-23). In general, the upper layer 

hydrographic structure is significantly improved in the state estimate relative to the 

withheld WOCE hydrography; data-model misfits are no larger than 1 - 2 °C The 

unconstrained model simulation does not transport enough heat down into the water 
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WOCE Hydrography 

Latitude 

Figure 3-22: Meridional sections of potential temperatui-e along the WOCE ARll line 
(33°W) in November, 1992. Top panel: Observations from WOCE (courtesy of T. 
Joj'-ce). Middle panel: Constrained model estimate. Lower panel: Unconstrained model 
simulation. 
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Figure 3-23: Error in potential temperature along the meridional WOCE ARU line 
(33°W) in November, 1992. Upper panel: Difference between the state estimate (con- 
strained model) temperature and observations. Lower panel: Difference between model 
simulated temperature (no data constraint) and observations. 

column, and hence, is 4 - 5 °C warmer than the observations at the surface. This 

success of the model in reproducing withheld data lends confidence to the state estimate 

throughout the entire domain, even away from sites of observations. Although the state 

estimate is an improvement, systematic errors do remain. Estimated surface temperature 

is as much as 1 ° warmer than observed, yet is erroneously cold at the base of the mixed 

layer (50 - 100 meters depth). The modelled physics of the mixed layer lead to this 

deficiency. 
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3.5.5    Tracking eddies 

After j&ndiiig a state estimate consistent with the lai'ge-scale observational signal, the 

next question is whether a model can be constrained to both the large and small-scale 

data signal. If the answer is affii-mative, then individual eddies can be tracked, insofar 

as they axe observed. The technical implementation of this new problem is very similar 

to the previous experiment, only the observational weights must be increased in order 

to correspond to the decrease in the expected errors. Although the mathematical trans- 

formation between the two problems is straightforward, the new least-squares problem 

poses a more stringent test than the original. Finding the model solution that fits the 

large scale signal alone is roughly equivalent to the study of Kohl and Willebrand (2002), 

where statistical chai-acteristics were constrained. Tracking individual eddy trajectories 

is a more demanding task, and one in which the existence of any solution can not be 

determined a priori. 

Optimization of the full cost function with stringent weights frequently stalls in 

control space. Changing the weights usually results in further improvements of the 

model trajectory. One particular change is to only weight the mooring terms in the 

cost function. This is a somewhat simpler test for the method: Fit the full observational 

signal of the moorings. In this case, the data-model misfit at the mooring sites decreases 

from 7.6 a to 1.8 a where a is the expected error (Figure 3-24). The gradient information 

looks plausible and a slow rate of convergence is kept. Approximately 150 iterations of 

the forward-adjoint model ai'e probably needed for complete consistency. Physically, the 

state estimate time-series at the Central mooring resembles the results of Spall et al. 

(2000); vertical diffusion transfers the warm summertime surface temperature to greater 

depth after a few months. 

Estimates of the initial eddy field 

What control adjustments allow eddies to be tracked away fi-om the moorings? Analysis 

of the adjoint-calculated gradient shows two bands of increased sensitivity to the cost 

function:   the Azores CmTent and the North Equatorial Cm'rent.   Previous studies, 
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Figure 3-24: Four depth-time diagrams of potential temperature at the Central Mooring 
site from June 1, 1992, to June 1, 1993. Top left. Mooring observations, bottom left. 
Levitus climatology, top right Constrained model estimate, bottom right Unconstrained 
model simulation. The constrained model estimate accurately depicts the timing of and 
magnitude of the seasonal cycle, unlike the unconstrained model. 

including Gill et al. (1974), have shown the basic state North Equatorial Current to be 

bai-oclinically-unstable. The Azores Current is also a source of eddy energy, as seen in 

the TOPEX/POSEIDON altimeter measurement. Baroclinic instability is theorized to 

increase the sensitivity of these regions (Galanti and Tziperman 2003), because eddies 

can grow and transport information away from then' formation site. In the optimization 

here, small perturbations in the initial conditions lead to large changes in the eddy field 

at later times (Figure 3-25). Furthermore, the mooring contribution of the cost function 

is most sensitive to initial temperature. Finally, it should be noted that the estimated 

eddy field still has low levels of kinetic energy during the first two months; the spin-up 

problem has not been completely solved by state estimation. 

3.6    Summary 

There is no fundamental obstacle to constraining an eddy-resolving model to observa- 

tions in this region of the ocean.  Here, a state estimate consistent to the large-scale 
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T(t=0) Adjustment (Fine OpBm. Only), 310 meters, [C] SSH Change due to Optimization, end of year 1 [cm] 

24°W 16"W 

Figui'e 3-25: Left. Initial teinperatui'e adjustment from the optimization of the small- 
scale observational signal. Right Rearrangement of the sea surface height field after one 
year by the initial temperature adjustment. 

signal in all observations is found. P\irthermore, small-scale motions observed by the 

moorings are capably reproduced by the state estimate, as well. Individual eddies are 

tracked insofar as they influence the mooring sites. The search for these state estimates 

is helped by the following conditions: 

• The eastern subtropical gyre is more quiescent than the western boundary of the 

basin, where strongly nonlinear features exist. 

• A coarse-resolution model skillfully simulates much of the large-scale ocean circu- 

lation, and can be used to eliminate major biases in an eddy-resolving model. 

The result is a time-evolving, three-dimensional estimate of the ocean circulation which 

reasonably fits a wide variety of available information and exactly follows the dynamics 

of the MIT General Circulation Model (Figure 3-26). In addition, we now have improved 

estimates of the initial eddy field, open boundaiy conditions, wind stresses, and air-sea 

fluxes. The state estimate is ideal for the study of the role of eddies in subduction 

because it is dynamically consistent and it explicitly resolves eddy-scale motions. 
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Temperature, 310 meters, [° C] 

54°W 36°W 18°W 

Figure 3-26: Nested view of the 1/6° regional state estimate inside the 2° ECCO state 
estimate. Potential temperature at 310 meters depth, Avith a contour interval of 1°C, is 
shown. The boundarj^ between the two estimates {thick black line) is discontinuous in 
temperature because of the open boundary control adjustments. 
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Chapter 4 

The Role of Eddies in Subduction 

4.1    Overview 

Chapter 4 quantifies the many processes that subduct water in the eastern North At- 

lantic Ocean. Vertical velocity in the upper ocean, usually attributed to Ekman pump- 

ing (Montgomery 1938), is a logical candidate to transport surface waters into the main 

thermocline. Vertical velocity, in conjunction with the seasonal cycle of mixed-layer 

depth, biases the properties of subducted water to late-winter values through the so- 

called "mixed-layer demon" {Stommel 1979). A less obvious process, at least until the 

work of Woods (1985), is the subduction of water through a sloping mixed-layer base, 

termed "lateral-induction". Relatively httle is known about its importance of mesoscale 

eddies and the associated "eddy subduction" in the eastern half of the subtropical gyre, 

although both theory (Marshall 1997) and studies of other regions (Hazeleger and Dri- 

jfliout 2000) suggest that eddies are important. In short, subduction can be caused by 

a combination of Ekman pumping, siurface buoyancy forcing, horizontal flow across a 

sloping surface, and mesoscale eddies, but their relative regional importance has not 

been quantified. 

The state estimate of Chapter 3 is ideal for this study because it is dynamically self- 

consistent and physical mechanisms can be associated with the movement of subducted 

water. In addition, eddy-scale motions are resolved, and hence, eddy subduction can be 
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explicitly diagnosed. Observations alone do not provide the necessary spatial coverage to 

diagnose all the processes that lead to subduction. Models do provide adequate coverage 

of spatial fields, but previous studies have either been in an idealized context (Marshall 

1997; Hazeleger and Drijfhout 2000), or they have not explicitly resolved eddy motions 

(Marshall et al. 1999; Spall et al. 2000). Furthermore, no study of subduction has ever 

been conducted with a model-observation synthesis, such as the product of Chapter 3. 

After reviewing the physical process that subduct water (Section 4.2), Chapter 4 di- 

agnoses subduction rates in the state estimate. To understand the impact of subduction 

on particular water masses, calculations are primarily done in a density coordinates. The 

challenge of isopycnal analysis of a level-coordinate information source is addressed in 

Section 4.2.4. Density-coordinate calculations, in conjunction with spatial maps of sub- 

duction, show that the Azores Current and the North Equatorial Current are prospective 

sites of significant eddy subduction. 

4.2    Kinematics of subduction 

Subduction is the transfer of fluid from the mixed layer into the thermochne, contingent 

that it does not become re-entrained to the mixed layer later in the same year. This 

kinematic definition of subduction is inherently Lagi'angian; water parcels axe followed 

throughout a seasonal cycle. In this way, subducted water only refers to permanently 

subducted water; that is, water must pass below the maximum mixed-layer depth of that 

particular year. The philosophical bias of this study is that subduction is a quantity of 

interest only over long time periods, such as an integer number of seasonal cycles. This 

is in contrast to some previous authors (i.e., Cushman-Roisin 1987) who do not make 

any distinction between detrainment and subduction. 

Mathematically, subduction is a intimately related to entrainment and detrainment 

of the mixed layer. The instantaneous rate of water exchange between the mixed layer 
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and the underlying stratum is quantified as an entrainment velocity, w^: 

w, = -^ + Wh + nh-Vh (4.1) 

where h is the depth of the mixed layer, Wh is the vertical velocity at depth h, and u^ is 

the two-component horizontal velocity at depth h. The entrainment velocity gives the 

rate of volume transfer per unit horizontal area, usually expressed in units of meters 

per year. The symbol, to,, follows the convention for cross-interface volume flux from 

Pedlosky (1996), although he mostly dealt with isopycnal surfaces, and the mixed-layer 

base need not correspond to one. Positive entrainment velocity represents entrainment, 

and conversely, negative w^ is detrainment. Note that entrainment can occur without 

any vertical velocity or any physical movement of water. One example is a resting 

ocean with a shoaUng mixed layer. The volume of the mixed layer decreases and water 

is detrained, but individual water particles do not move. Horizontal velocity through 

a sloping mixed-layer base, termed lateral induction, also entrains or detrains water. 

Prom above, detrainment from the mixed layer is not completely controlled by Ekman 

pumping, nor is it a purely vertical process. 

The volume of detrained water is the integral of the entrainment velocity over space 

and time: 

V = f j^{-w.)dAdt, (4.2) 

where the script A is the horizontal area^ of interest. If the area of integration is 

restricted to regions of detrainment, then V will be positive, indicating a volume of 

water transferred out of the mixed layer. Without the specification that w, < 0 in 

(4.2), the volume of detrained water could be negative, corresponding to a conversion 

of water from the main thermocHne to the mixed layer. Next, the distinction between 

detrainment and subduction is elucidated. 

When integrating over an integral number of seasonal cycles, (4.2) calculates the 

net volume of subducted water. Because a full seasonal cycle is considered, only water 

^Areas are always denoted by a script A in this thesis in order to reserve A for cross-isopycnal 
advective flux (Garrett et al. 1995). 
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that escapes the mixed layer without being re-entrained is counted in V. Therefore, the 

result of competition between detrainment and entrainment yields net subduction. 

4.2.1     Subduction and the seasonal cycle 

To the first order, the seasonal cycle of the mixed layer controls subduction. The rate 

of change of the mixed-layer depth, dh/dt, typically dominates the terms in (4.1). As a 

consequence, most of the water detrained from the mixed-layer is re-entrained later in 

the year by the deepening mixed layer. Only water which is detrained in the late winter 

and early spring, when the mixed layer is deepest, remains in the main thermocline. 

Stommel (1979) first pointed out this effect, now termed the "mixed-layer demon", 

which explains the bias of the main thermocline to late-winter mixed-layer properties 

(also recall Figure 1-1). Williams et al. (1995) confirmed that this process is active in 

a primitive equation model at coarse resolution. In the state estimate here, a first step 

of Section 4.4 is to check if the mixed-layer demon is operating. 

4.2.2    Water-mass subduction rates 

One goal of this thesis is to determine how subduction sets the water-mass distribution of 

the main thermocline. A "water mass" is defined as the water in a particular potential- 

density class. Here, the rate of injection of a water mass into the main thermocline is 

categorized as a function of a, the potential density referenced to the surface. Following 

the notation of Marshall (1997), the net volume flux across the mixed-layer base at a 

density less than a is S{a,t): 

rA(a,t) 
Sia,t)=l        {-w.)dA, (4.3) 
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where A is the surface area of the mixed-layer base at density^ less than a. The advan- 

tage of density-coordinate analysis is that any water-mass can be isolated. For example, 

net volume flux in an infinitesimal density band, a to a + 6a, is 5S: 

SS = ^5a, (4.4) 

the divergence of S{a,t) with respect to density. Prom (4.4), the net volume flux in a 

finite density interval 6 to a is given by the difference, S{a, t)-S{b, t). As seen above, the 

power of density-space calculations is that any water mass can be individually examined. 

Equation (4.3) is based upon the instantaneous detrainment rate, but previous inves- 

tigators (Marshall and Marshall 1995; Hazeleger and Drijfhout 2000) have emphasized 

that entrainment is not always equal to subduction because of the intricacies of the sea- 

sonal cycle. However, when averaging over at least one seasonal cycle, the net volume 

flux into the main thermocline is equal to the volume of subducted water. Therefore, 

the water-mass subduction rate, S{cr), is the average volume flux: 

_ n^^^'H-w*) dA dt 
Sia) = jrj^ , (4.5) 

where t is an integer number of seasonal cycles. Water-mass subduction rates axe easily 

compared to other oceanographic quantities. It is a volume transfer per unit time, and 

is large enough over an ocean basin to justify the use of Sverdrups (1 Sv = 10^ m^/s) 

for units^. In this thesis, subduction rates are only defined as an average over an entire 

seasonal cycle, and the time integral in (4.5) must be sufficiently long. 

^There is a slight distinction between the definition of 5(<T, t) here, and M{a; t) of Marshall et al. 
(1999). Marshall et al. (1999) define M{a,t) as the volume flux between potential density CTI and a. 
Here, based on the practical approach of setting ai to a very small value, M{cr,t) is defined as the 
volume flux at all potential densities less than a. 

^Upper-case variables are used for volume fluxes with units of Sverdrups. Volume fluxes per unit 
horizontal area, in units of m/s or m/yr, are denoted with lower-case variables. 
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4.2.3    Eddy contributions to subduction 

Water is subducted by both mean and time-vaiiable components of the circulation, 

although this was not explicitly noted in Equation (4.2) or Equation (4.5). Here, we 

derive the explicit contribution of eddies to the water-mass subduction rate. Following 

Marshall (1997), Equation (4.5) is rewritten and expanded into mean and time-variable 

components of the circulation: 

S{a) = -w^A=-iw, + wi) (A + A'), (4.6) 

where the overbar defines a running mean over one or more seasonal cycles. By the rules 

of averaging, 

S{a) = - ( w.A + K^ )• (4-7) 

The mean and deviation of entrainment velocity must be carefully defined. Specifically, 

W*   =   ^ + Wh + nh-Vh + u',-Vh', (4.8) 

w'^   =   10,-11;,. (4.9) 

Notice that the mean entrainment velocity includes a contribution from the correlation 

between mixed-layer depth and velocity variations. Expanding all the terms, the total 

water-mass subduction rate is: 

S{a) = -l^ + Wh + n^,■ Vh + u'^-Wh'\ A - K^. (4.10) 

In particular, the third term in the lateral induction term, first emphasized by Woods 

(1985). The fourth term is an eddy thickness flux across the moving riiixed-layer base. 

The last term on the right hand side, originally noted by Marshall (1997), shows that 

correlations between the local subduction rate and the surface outcrop area also subduct 

water. As seen above, the rate at which water is transferred into the main thermocline 

need not be set by the Eulerian mean quantities alone. 
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To isolate the role of eddies, Marshall (1997) defined the eddy component of subduc- 

tion by grouping all the time-variable terms in (4.10): 

SeMy{(y) = -{< ■ V/l') A - W'^M, (4.11) 

where the entire term represents a bolus flux by eddies. In an eddying circulation, 

subduction by the mean flow may not be the only relevant quantity for understanding 

water mass distributions. Follows and Marshall (1994) estimated that eddy fluxes across 

typical oceanic fronts drive subduction with magnitudes comparable to the mean flow. 

In the Antarctic Circumpolar Current, the subduction of Antarctic Intermediate Water 

is not adequately captured by mean subduction rates (Marshall 1997). Furthermore, 

subduction in the Gulf Stream system is dominated by eddy-scale motions with rates up 

to 150 miyr (Hazeleger and Drijfhout 2000). These are all cases where eddy subduction 

is a non-neghgible component of the total subduction. 

4.2.4    Surface layer volume budget 

The water-mass subduction rate, introduced above, is only one part of a larger vol- 

ume budget. The complete surface layer volume budget is performed for two reasons. 

One, the influence of eddy motions on subduction can be estimated in an independent 

way through other terms in the budget. Two, isopycnal budgets allow a connection be- 

tween kinematics and thermodynamics by the combined usage of conservation of volume 

and buoyancy. Through a density-space approach, the similarity between subduction 

and transformation, the flow of water across isopycnals, is clearly seen. In summary, 

estimates of subduction through isopycnal budgets give another way to quantify the 

importance of eddy motions in individual density classes. 

The "surface layer" is defined as the seasonally-varying part of the ocean - every- 

where shallower than the maximuin mixed-layer depth. The volume of surface layer with 

potential density less than a can be changed by volume flux through four boundaries, 

Ath-, Aa, AB, and As (Figiu-e 4-1). The four boundaries are the base of the mixed layer, 
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an isopycnal, the domain boundary, and the sea surface, respectively. Therefore, the 

volume budget of the surface layer over one year is: 

^^^ = Ms{a,t) - Aia,t) - S{a,t), (4.12) 
at 

where V{a,t) is the density-class volume, MB{cr,t) is the volume flux through the open 

boundaries, and A(a, t) is the diapycnal volume flux (to be explicitly defined in the next 

section). Volume flux through the surface by evaporation and precipitation is much 

smaller than the other fluxes, and neglected in (4.12). For a steady-state ocean basin, 

Marshall et al. (1999) reduced (4.12) to show the direct relationship between subduction 

and diapycnal advective fluxes: 

S{a) = -A{a). (4.13) 

This thesis explores the extent to which the above relationship holds in the Northeast 

Atlantic. Equation (4.13) is important because the eddy component of A{a) must have 

some relation to Seddy{c^)- 

Due to the mixed-layer demon, only water which moves out of the seasonally-varying 

ocean into the main thermocUne is permanently subducted. The boundary between the 

seasonal and main thermocline is defined as the maximum mixed-layer depth in the 

year, usually occurring in late winter. Therefore, we choose the bottom boundary of the 

"surface layer" to be fixed at the maximum mixed-layer base over one year. 

Terms of the volume budget 

When considering the water-mass subduction rate across a fixed bottom boundary, the 

problem is simplified dramatically. The area-normalized volume flux across the deepest 

mixed-layer base is usually called the annual subduction rate (Cushman-Roisin 1987; 

Nurser and Marshall 1991; Marshall et al. 1993), and is defined: 

s. 'ann 
Vann "(Wg + Ug • Vff) • (^) • (1 t/r) ^ ^^^^^ 

f^'J^dAdt iA)-{lyr) 
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where Vann is the volume of subducted water, H is the depth of the maximum mixed- 

layer depth, UH and wu are the mean velocities at depth H, and the overbar represents 

a one-year mean. Simplifying (4.14), a relationship of diagnostic utility results: 

Sann = -(Wjy + UH " VF). (4.15) 

Therefore, the net volume flux across a fixed lower boundaiy is: 

S{a, t) = -J     (wH + nH- VH) dA, (4.16) 

by use of Equation (4.3) and Equation (4.14). 

The next term of the volume budget, Equation (4.12) is the open boundaiy mass 

source, M^: 
rAB(cr,t) 

MB{a,t) = J VB-nsdA, (4.17) 

where ^B(<7, t) is the surface ai'ea of the open boundary at density less than cr, v^ is the 

open boundary velocity, and n^ is the duection normal to the boundary. The addition 

of open boundary terms to the works of Walin (1982) and Speer and Tziperman (1992) 

is a novel development of this thesis. Conceptually, the lateral boundary can be thought 

of as a special case of the bottom boundary where H{x, y) = 0 outside the domain of 

interest. This technique is used to derive the open boundary modifications. 

The diapycnal advective volume flux, A{a,t), is defined as: 

A{a,t) = j^" "'* (v - V,) - n, dA,     K = Va/|Vor|, (4.18) 

where v is the fluid velocitj'^, v<^ is the isopycnal velocity, and lio- is the direction normal 

to the isopycnal. The diapycnal volume flux is calculated following the meandering 

isopycnal. A is positive for flow across isopycnals to higher density. The cross-isopycnal 

advective flux gives the sum hifluence of the interior ocean dynamics on the water-mass 

volume budget. 
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Surface layer volume budget 
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Surface layer volume budget - Plan view 
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Figure 4-1: The shaded fluid is bounded by an isopycnal, the maximum mixed-layer 
depth, H{x,y), the sea surface, and the regional boundary. These surfaces have areas 
Aa{cr, t),Athicr, t), As{cr, t), and Asicr, t). The diapycnal volume flux through the isopy- 
cnal a is A{a,t), the volume flux across H(x,y) into the interior of the ocean is S{a,t), 
and the open boundaiy volume flux is MB{cr,t). 
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4.2.5    Eddy diapycnal fluxes 

The goal of this section is to determine the role of eddies in subduction in individual 

density classes. The previous arguments have shown, tlirough the conservation of vol- 

ume, that there is a direct connection between subduction and cross-isopycnal flow in 

the surface layer. In this framework, eddies contribute to cross-isopycnal volume fluxes, 

and thus, affect subduction. An estimate of the importance of eddies in the volume 

budget of the upper ocean is presented next. 

The effect of time-variable motions, excluding the seasonal cycle, is isolated by defin- 

ing a term, Aeddy- 

/Ae,{a;t) /■Acr{<T,t) _         

(v -v^)-h^ dA- I (y - v^) • n,, dA (4.19) 

where the overbar represents a running mean of one month. Although other definitions 

of Aeddy are possible, this definition closely isolates the effect of eddies that must be 

parameterized in a coarse-resolution model. Furthermore, Aeddy is another way to study 

the eddy contribution to the water-mass subduction rate — an indirect way to calculate 

Seddy of Section 4.2.3. 

4.2.6    Surface layer buoyancy budget 

Water crosses isopycnals only in the face of diabatic processes (Figure 4-2). Conse- 

quently, there is a direct connection between kinematics and thermodynamics. This 

thesis introduces the thermodynamics of the surface layer for two reasons. One, diapy- 

cnal fluxes, computed earUer in the kinematic section, may also be inferred by com- 

plementary buoyancy fluxes. An independent check on the diagnostic method is then 

possible. Two, the addition of thermodynamics allows a more complete picture of the 

ocean processes at work. 
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Transformation rates 

The buoyancy budget of the surface layer control volume follows the same geometry of 

Figure 4-1. In an ocean where the only diabatic forcing is at the surface, the buoyancy 

flux, B is comprised of freshwater flux and heat flux: 

B{x, y) = ^ {-^HQ + poISS HF) , (4.20) 

where HQ is heat flux, Hp is freshwater flux, a is the thermal expansion coefiicient, /5 is 

the haline expansion coefficient, and C^ is the specific heat capacity of seawater. Based 

on the conservation of volume and simple thermodynamics, the diapycnal advection of 

buoyancy is balanced by the surface forcing in an isopycnal layer: 

A{a, t) = Fia, t) ^ ^^,   where B{a, t) = j^' B{x, y) dA, '   (4.21) 

and Fia, t) is the average water-mass transformation rate. The water-mass transforma- 

tion rate is the buoyancy convergence in a particular density band, which can be inter- 

preted as the rate that fluid moves across an isopycnal due to surface buoyancy forcing. 

Walin (1982) used (4.21) to diagnose the "poleward drift" of the upper ocean from a 

climatology of surface fluxes. Speer and Tziperman (1992) later calculated F{a,t) with 

climatological datasets. They used this definition to identify the water-mass formation 

rates of the North Atlantic Ocean. 

In oceanographic datasets, diagnosed transformation rates, F(a, t), differ largely from 

diapycnal fluxes, A(a,t) (Speer and Tziperman 1992; Garrett et al. 1995), primarily 

because interior ocean dynamics axe neglected in the buoyancy budget. In the surface 

layer region, non-advective buoyancy input is balanced by the advective component. 

However, the presumed balance in (4.21) is not complete because diffusion is ignored. 

Non-advective buoyancy input is due to siurface buoyancy forcing, B, diffusion across 

isopycnals, D^, diffusion across the mixed-layer base, Dmi, and, in the regional case, 

diffusion across the open boundaries, DB- In this way, the total supply of buoyancy by 
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transformation 

Buoyancy 
<^      fluxes 

diffusive 
fluxes 

-^ control surface 

Figure 4-2: Diagram of a fixed control region of the mixed layer bounded by the sea 
surface and two isopycnals. Both volume and buoyancy budgets can be formed in the 
shaded region, leading to a set of diagnostics in density space. Subduction is the volume 
flux across the fixed lower control surface. Buoyancy fluxes at the sea surface and 
diffusive fluxes in the interior transform water masses from one density class to another. 
Prom Marshall et al. (1999). 

diffusion has three components: 

D{a,t)^D„{a,t) + Drrdi(J,t) + DB(a,t). (4.22) 

The advective supply of buoyancy is by diapycnal advection or by advection across the 

open boundaries. For an enclosed region of the ocean, Garrett et al. (1995) give a 

detailed derivation of (4.21), and Nakamura (1995) independently derived this relation 

for atmospheric tracers. With these new definitions, conservation of buoyancy can be 

rewritten in a final form: 

A{a,t) = F{a,t) 
dD{a,t) 

da     ■ 
(4.23) 

The diapycnal volume flux above also contains a contribution due to the heat transport 

by horizontal motions across isopycnals, although we find later that it is a small contribu- 

tion. In summary, an exphcit relationship between the kinematics and thermodynamics 
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of subduction has been found. This relationship will be used in Section 4.4 to check the 

kinematic estimates of subduction, and could be used to provide some interpretation of 

the dynamical processes. 

4.3    Regional circulation and subduction pathways 

Kinematically, two quantities are necessary to calculate the subduction rate: u, the 

ocean velocity field, and h, the mixed-layer depth. Fu'St, the characteristics of the 

circulation implied by the state estimate of the eastern subtropical gyre are discussed. 

Later, the seasonal cycle of the mixed layer and its role as a rectifier of subducted 

water is detailed. After this introduction, subduction rates are diagnosed throughout 

the basin. Specifically, the role of eddies in subduction is kinematically estimated. 

Mean Velocity at Base of Mixed Layer: 1/6 State Estimate 

18°N 

12°N 

36°W 30°W 24°W 18°W 12"*^ 

Figure 4-3: Mean circulation over one year at the depth of the deepest mixed layer. 

The mean circulation of the upper ocean is dominated by the Azores Current with 

speeds up to 20 cm/s (Figure 4-3). The current transports about 12 Sv of water eastward 
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Eddy Kinetic Energy, 100 m: 1/6 State Estimate        (cm/s)' 
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Figure 4-4: Eddy kinetic energy at 100 meters depth. 

at 40°VF, which diminishes to roughly 3 Sv near the Mediterranean outflow. No formal 

error bars have been calculated, but many numerical sunulations have been performed. 

In the simulations that fit the observations in a reasonable way, the strength of the 

current varies by no more than 2 Sv in the west, and 1 Sv in the east. The Azores 

Current of the state estimate has similar width and transport found in surveys by 

research vessels (Rudnick and Luyten 1996; Joyce et al. 1998). Most modeled fronts 

are considerably weaker than the strong current found in this state estimate (Jia 2000; 

New et al. 2001). The position of the east-west axis is 3Q°N, which is faither north 

than the climatological position by 1 - 3° of latitude, but consistent with the recent 

synthesis of Weller et al. (2004) for the years 1991-1993. Upon impinging on the eastern 

boundary, almost 1 Sv of downwelling occurs in the Gulf of Cadiz. Roughly two-thirds 

of the this downwelled water retroflects to the south, with the remaining portion going 

north. The causes of the Azores Current, and its effect on subduction, are discussed 

next. 

Solution of the least-squares problem of Chapter 3 offers information about the pro- 

137 



Mean Potential Density at Mixed-Layer Base: 1/6 State Estimate 

12°N 

24°N 

18% 

36°W        3o°w        24°W        18°W 12°W 

Figure 4-5: Mean potential density at the maximum mixed-layer depth.  The spatial 
density structure serves as a new basis function to examine and understand subduction. 
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cesses that form the Azores Cuii'ent. The ECCO 2° global state estimate (Stammer 

et al. 2002) models the Mediterranean Sea and includes an Azores Current with rea- 

sonable transport. However, the use of the ECCO state estimate as a open boundary 

condition in the 1/6° model here does not drive a realistic Azores Current (Figure 4-6). 

Instead, the inflow of water on the western open boundary meanders southward, and 

does not follow a tight, zonal trajectory across the domain. The model simulation may 

be inaccurate because the 2° ECCO Azores Current is too broad and too warm. 

40°N 
Simulation 

32°W 24°W 
Estimation 

16°W 

32°W 24°W 16°W 

Figure 4-6: Velocity snapshot ui the Azores Current subregion. Without any data con- 
straint, the model simulation (upper panel) has an Azores Current that meanders south- 
eastwai'd. The state esthnate (lower panel) shows a tight, zonal current in accordance 
with the observations of 1991-93. The maximum velocity vector is 10 cm/s. 

Although the placement of the Subduction Experiment moorings intentionally avoided 

the Azores Current, the TOPEX/POSEIDON altimeter still provides information on the 

proper ocean circulation in this subregion. Observations of sea surface height anomaly by 
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TOPEX/POSEIDON demonstrate that SSH variance is too weak in the model simula- 

tion (Figure 4-7). To correct this inconsistency with observations, the western boundary 

inflow of Azores Current water is shifted southward and intensified into a narrower jet 

in the state estimate. Therefore, the northern and western boundary condition has a 

strong influence on the formation and maintenance of a realistic Azores Current over 

one to two years. 

SSH Variance: Simulation 
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Figure 4-7: Sea surface height variance in the Azores Current subregion as seen in the 
model simulation [upper panet) and the state estimate [lower panel). The lower panel has 
the same general spatial structure of TOPEX/POSEIDON observations, and roughly 
60% of the energy The state estimate is generally in accordance with observations while 
the model simulation is not. The contour interval is 10 cvn?. 

Previous studies have shown the strong sensitivity of the modeled Azores Current 

to model formulation (Jia 2000; New et al. 2001). Speciflcally, isopycnal coordinate 

models were found to give a stronger current than their z-coordinate counterparts. The 

inference is that water mass transformation in the Gulf of Cadiz and the sinmlation 
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of the Mediterranean outflow was crucial to a realistic simulation in the open ocean. 

Furthermore, Jia (2000) showed in an initial value problem that the modeled Azores 

Current formed from the east and extended westward with the speed of a baxoclinic 

Rossby wave. Therefore, spinup of a current of realistic strength took 15 - 20 years. 

Here, the state estimate does not include the Mediterranean Sea, and the total model 

duration is only two years. 

The importance of the Mediterranean in the present study can be determined by 

performing a sensitivity study with the adjoint model. Sensitivity information is very 

eflaciently calculated by the adjoint model, and presents a second major advantage of 

the methodology of this thesis (recall Section 3.2.5). Using the same cost function as 

Chapter 3, the magnitude of the gradient with respect to the open boundaries gives the 

relative importance of each boundary. The eastern boundary, located in the Mediter- 

ranean outflow, is not more important than the other boundaries. In fact, the western 

boundary and northwest corner of the domain do appear to be most important. This 

result was checked by changing the open boundary conditions of the forward model; the 

Mediterranean outflow was opened and the fluxes were prescribed by the ECCO global 

state estimate. The open-ocean circulation was not significantly changed by this modifi- 

cation to the forward model. The results do not necessarily conflict with the findings of 

previous investigators. Here, the Azores Current is present in some form in all runs, and 

the sensitivity study is measuring the stability of the already-formed current. The initial 

value description of Jia (2000) addresses a decidedly different problem. In addition, the 

timescale of analysis here, one to two years, is much shorter than the decadal timescales 

of other studies. 

The Azores Current has a profound influence on subduction. The most apparent 

effect is the distortion of the mean streamlines of the upper ocean into a zonal jet, away 

fi-om a southwestward flow (Figure 4-8). Ocean theories which depend upon Sverdrup 

balance alone do not explain such a deviation in upper-ocean circulation. Consequently, 

the ventilated thermocline theory of Luyten et al. (1983) and the extension by Huang 

and Russell (1995) have upper-ocean subduction pathways which are different from those 
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observed. Because of the lack of an advective pathway across the Azores Current, the 

theory of Rhines and Young (1982) predicts a a region of homogenized potential vorticity 

behind the front. Robbins et al. (1998) searched for such a region, but it was not present 

in observations. These results suggest that some subduction mechanisms in the region 

of the Azores Current are not included in classical theory. 

Mean streamlines: 1/6 State Estimate 

-40 

Figure 4-8: Streamlines of the mean horizontal velocity field at the depth of the maxi- 
mum mixed layer. The streamlines start at the western end of the northern boundary 
with a spacing of 1°, from 39°W to 2rW. The flow carries water into the Azores 
Current, then in a general southwestward trajectory that is consistent with the drift of 
SOFAR floats (Sundermeyer and Price 1988). 
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4.4    Subduction in the state estimate 

4.4.1    Seasonal cycle of entrainment 

Maximum Mixed-Layer Depth: 1/6° State Estimate 

36% ■ 

36°W        30°W        24°W        18°W 12°W 

Figure 4-9: Maximum mixed-layer depth over one seasonal cycle.  The mixed layer is 
defined as the region where the density difference to the surface is less than 0.025 kg/m^. 

Does the mixed-layer demon operate in the state estimate? The primary requirement 

is that the seasonal variation of mixed-layer depth is larger than the vertical displacement 

of water parcels. Maximum mixed-layer depths in February reach 200 meters (Figure 4- 

9). Winterthne mixed-layer depth shoals equatorwai-d of 25° N, in accordance with 

climatologies (Marshall et al. 1993; Levitus and Boyer 1994) and traditional thinking. 

However, the region between 25° TV and 35° N does not have an equatorward gradient of 

mixed-layer depth, which is surprising but in accordance with the observational synthesis 

of Weller et al. (2004). The mixed layer is shallower in the Azores Current, due to 

the input of relatively buoyant water throughout the year.  Because the summertime 
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mixed layer shoals everywhere to 20 - 30 meters depth, seasonal changes of mixed layer 

approach 150 meters. In comparison, vertical motions displace water parcels no more 

than 30 meters in one year. The magnitudes of these two processes suggest that the 

mixed-layer demon is important hi this region. 

Snapshots of entrainment velocity, calculated by Equation (4.1), quantify the impor- 

tance of the seasonal cycle of mixed-layer depth. Four snapshots, representing the four 

seasons, are displayed in Figure 4-10. Instantaneous entrainment velocities frequently 

exceed a magnitude of 1000 miyr, much gi'eater than any Ekman pumping rates. The 

largest magnitude of entrainment velocity is -3500 miyr: equivalent to a shoaling of 

the mixed layer of 100 meters in ten days. Entrainment has strong seasonality due to 

the domination of w* by the time rate change of mixed-layer depth, dh/dt. The seasonal 

cycle includes deepening of the mixed layer in summer, autumn, and early winter, and 

rapid shoaling in late winter and spring. The retreat of the mixed layer toward the 

surface in early spring will be shown to be the period of effective subduction. 

Prom the snapshots of entrainment velocity, an estimate of the effective subduction 

period is possible. This period begins at the time of maximum mixed-layer depth, and 

ends when the volume of detrained water equals the volume of subducted water for 

the whole year. In other words, water may be detrained after the end of the effective 

period, but it will be re-entrained later. The time of maximum mixed-layer depth can 

be defined two ways: the time of maxhnum volume of the mixed layer (here, February 

20), or the median time of maximum mixed-layer depth tlu'oughout the region (March 

15). Weller et al. (2004) remarked that the deepest mixed layers occur in Februaiy in 

the north of the domain, and in March in the south, in close accordance with the state 

estimate. Figure 4-11 integi-ates the volume of detrained water after February 20. Over 

the entire domain and over one j^ear, 2.1 • 10^^ m^ of water is detrained, which amounts 

to a subduction rate of 27 mIyr over the entire domain. By this method, the effective 

subduction period is 53 days, because an equivalent amount of water is detrained in this 

time. As a measure of the error in the diagnostics, integration from Mai'ch 15 instead of 

February 20 yields a period of 45 daj's. Other studies have estimated that subduction 
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Summer 1000 

24°W 1000 

Figure 4-10: The seasonal cycle of detrainment from the mixed layer. The seasonal cycle 
proceeds clockwise. Blue areas represent lai-ge values of entrainment, lo* < —1000 miyr. 
Dark red areas represent large values of detrainment, lo* > 1000 m/yr, and are potential 
sites of subduction. Green ai'eas include all intermediate values of entrainment velocity. 
As the entrainment velocities are dominated by local values of dh/dt, the patterns ai'e 
not associated with any frontal structures. 
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occurs over 1.8 to 2.2 months in the North Atlantic (Marshall et al. 1993; Hazeleger 

and DrijflTiout 2000). The short time of subduction shows that Stommel's mixed-layer 

demon stroboscopically regulates the passage of water into the main thermocline of the 

state estimate. 

Seasonal Cycle of Detralnment 
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Figure 4-11: Cumulative volume of detrained water, normahzed by the full domain area. 
The normalized volume is calculated beghmhig February 20, and extends over one year. 
It may be thought of as the thickness of detrained water. The total volume {solid, black 
line) is a sum of the contributions by the time rate change of mbced-layer depth {dh/dt, 
line with diamonds), vertical displacement {w, line with circles), and lateral induction 
(u • Vh, line with X's). The effective subduction period is geometrically seen to be 1.5 
months. 

4.4.2    Estimated subduction rates 

Before calculating the water-ma^s subduction rate, Equation (4.3), we wish to under- 

stand the geographic distribution of subduction. Using the exact form of (4.15) without 

smoothing any of the fields, the annual subduction rate is calculated for the state esti- 

mate at eddy-resolution (Figure 4-12). Small-scale variations in the maximum mixed- 

layer depth (recall Figure 4-9) and the horizontal circulation field (Figure 4-3) lead to 

locally-intense volume fluxes. These volume fluxes are oriented horizontally across the 
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sloping mixed-layer base. The inherently-noisy nature of the gradient of H is responsi- 

ble for subduction rates up to 300 m/yr. In contrast, the vertical velocity field at the 

mixed-layer base is predominantly lai'ge-scale. The small-scale intense subduction rates 

here are not an artifact of the diagnostic scheme; the definition of annual subduction is 

responsible. A one-year time average is only two or three baroclinic life-cycles: not long 

enough to eliminate small-scale features in the mean circulation of an eddy-resolving 

state estimate. 

Annual Subduction Rate: 1/6 State Estimate 

36°W        30°W        24°W 18°W 12°W 

Figure 4-12: Annual subduction rate, Sann = —(WH + UH-VH). The small-scale, intense 
subduction rates are due to lateral induction by the mean circulation. 

Although local subduction rates ai'e intense, small-scale features do not necessarily 

lead to net subduction when integrated over the domain. The domain-averaged annual 

subduction rate is approximately 6 Sv. The error is estimated as less than 1 Sv by the 

sensitivity of the model. For comparison, a large-scale subduction rate can be defined 

by evaluating (4.15) with the coai'se-gi'ained fields. Coarse-graining is accomplished by a 

2° running mean on the velocity and mixed-layer depth fields. The new definition of the 
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large-scale annual subduction rate is closer to the quantity calculated by previous studies, 

as the maxhnum mixed-layer depth field was usually smoothed by other authors. The 

large-scale annual subduction rate (Figure 4-13) gives a domain-averaged subduction of 

roughly 5.5 Sv for the state estimate. The patterns of subduction differ due to small- 

scale features still present in the mean cii-culation fields. However, the magnitude of 

subduction is relatively unchanged despite the fact that gi-adients are less sharp in the 

coai-se-grained fields. Further identification of the role of eddies in subduction requires 

the explicit study of the small-scale, time-varying fields. Unfortunately, time-vaiiability 

does not enter Equation (4.15) because the base of the mixed-layer is chosen to be fixed 

with time. 

Larqe-Scale Annual Subduction Rate: 1/6 State Estimate   [m/yr] 
 a200 
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24°W 

Figm-e 4-13: Lai'ge-scale, annual subduction rate Sirgsd = -(^^H* +"H* • VF*), where a 
star indicates a field that has been coarse-gi-ained. The domain-integrated subduction 
rate is not significantly altered by the coarse-graining. 
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Estimates of eddy subduction 

Eddy subduction in an Eulerian frame of reference reduces to the eddy volume flux, 

ujj • V/i', across the moving mixed layer, h{t). This is the first term of the eddy contri- 

bution to the water-mass subduction rate, Equation 4.11. One subtlety in diagnosing 

the state estimate is the definition of the mean circulation. Our definition of the mean 

is actually a monthly mean, so that time-variability of the seasonal cycle is not grouped 

with "eddy" variability. 

Eddy Subduction Rate: 1/6 State Estimate [m/yr] 
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Figure 4-14: Eddy subduction rate, computed as the eddy-thickness fiux across the 
time-variable mixed-layer base. Note the color scale ranges from —30 m/yr to 30 m/yr, 
a smaller range than Figure 4-12. Eddy subduction is lai'gest in regions with enhanced 
eddy kinetic energy. 

Local values of eddy subduction approach 40 m/yr in the North Equatorial Cur- 

rent and in parts of the Azores Current (Figure 4-14). In these frontal regions, eddy 

subduction is locally non-negligible in comparison to Ekman pumping rates of only 

20 — 30 m/yr. The magnitude of the eddy component of subduction is about 15% of the 
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annual subduction in select locations. However, the Eulerian field of eddy subduction 

does not allow a good evaluation of the net effect of eddies on water mass formation. 

When averaging over an ai'ea larger than the eddy length-scale, the net contribution to 

subduction nearly vanishes. This is a limitation of the Eulerian definition of subduc- 

tion; a more-Lagrangian viewpoint is needed to isolate the net impact of eddies. One 

attempt to visualize the impact of the eddies is to overlay the mean density contours 

with the eddy subduction rate (Figure 4-15). This isolates the first term of Seddy In 

general, no clear pattern is evident. In some cases, such as the bullseye in the Azores 

Current, subduction is positioned near a "wide mouth" in the isopycnals, a place with 

greater than average spacing. If such a situation happens more often that subduction 

neai' packed isopycnals, net subduction occurs. The next section of this thesis attempts 

to systematically evaluate the relationship between the isopycnals and subduction in a 

way that can not be done visually. 

Although the domain-integrated subduction rate is not significantly modified by 

eddies, eddy subduction is strongest in subregions with strong currents. This suggests 

that density classes which outcrop near the Azores Current or the North Equatorial 

Current may still be strongly affected by eddies. To check this proposition, a second 

perspective is available by isolating the impact of subduction in particular water masses 

(see Appendix D for technical details of the diagnostics). 

Estimated water-mass subduction rates 

The water-mass subduction rate is directly estimated from the velocity field at the 

mixed-layer base (Figure 4-16). A domain-integrated 4 Sv of subduction occurs in the 

domain. Due to the mixed-layer demon, all of the subducting water is in the density 

range a > 25.0, corresponding to the densities that outcrop in the late winter. The eddy 

subduction rate, Seddy{cr), is nonzero and indicates that net subduction due to eddies is 

occurring. Eddies act to subduct water in the late-winter density classes, but obduct 

water at a < 25.2. Through this density-coordinate analysis, the net impact of eddies is 

suggested. To further understand the processes that cause subduction, the surface layer 
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Mean Potential Density and Eddy Subduction Rate: 1/6 State Estimate 
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Figure 4-15: The eddy subduction rate overlaid with the mean density contours at the 
mixed-layer base. In some instances, subduction occurs in regions with widely-spaced 
isopycnals. 
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Water-Mass Subduction Rates 
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Sigma 

Figure 4-16: Water-mass subduction rate, S{a) {solid line), and eddy subduction rate, 
Seddyicr) {dashed line). The "X"'s mark the density resolution of the diagnostics. A 
domain-integrated 4 Sv of net subduction occurs. 

volume budget is considered next. 

4.4.3    Estimated surface layer volume budget 

The surface layer volume budget allows the determination of the relative importance of 

the open boundaries versus the interior dynamics in setting the water mass properties 

of subducted fluid. The annual-mean open boundary volume flux, MB{cr), is calculated 

with monthly average fields, and density bins of Aa = 0.2 (Figure 4-17). 'MB{cr) shows 

that some of light {a < 24.2) water is expelled from the basin. This happens primarily in 

the uppermost 50 meters near the North Equatorial Current. The majority of incoming 

water {^ 5 Sv) is in the density class 24.2 < a < 26.5. This indicates that the typical 

subtropical mode water classes are laterally recirculating in the subtropical gyre. Over 

the entire domain, the surface-layer open boundary flux is a net source of water; i.e., 

'MB{cr — 27) = ASv. This excess water must be subducted, which is shown below. 
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Open Boundary Volume Source, 1/6 State Estimate 
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Figure 4-17: The open boundary source of volume to the surface layer. Msic^) is the 
annual average source of volume at all densities less than a. 

Figure 4-18 shows the time-average diapycnal volume flux, A{a), in the surface layer 

as defined by Equation (4.18). Two components comprise A(a): 

Aia) = Asia) 
dVia) 

dt 
(4.24) 

Over much of the domain, water flows across isopycnals toward higher density because 

A{(7) > 0. However, water is formed only in the range 26.0 < a < 27.0 where the 

diapycnal flux is convergent.   In an integral sense, water leaves the lighter classes of 

water, and is made more dense in the domain. The high values of dV{a)/dt show that 

the model's isopycnals have been displaced over one year. 

The domain-integrated subduction rate, S{a > 27) = 4 Sv, is given by the water- 

mass subduction rate at the maximum potential density in the surface layer. This value 

is effectively set by MB(<J > 27), as any excess water that enters through the open 

boundaries is subducted across the mixed-layer base by volume conservation. 
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Diapycnal Volume Rux, 1/6 State Estimate 
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Figure 4-18: Diapycnal volume fluxes in the_surface layer. All overbars have been 
dropped in the figure. Together, 7^H{O) and 'Azia) represent the Eulerian component 
of volume flux through the horizontal and vertical velocity fields. dV{a)/dt represents 
storage in an isopycnal which results from the net displacement of a density surface. 
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The combination oiJI^ia) and A{a) determine S(a), and hence, the properties of the 

subducted water (Figure 4-16). When considering the relative importance of these two 

terms, three different regimes in the domain emerge. The shallow, summertime density 

range, a < 24.2, is dominated by a throughfiow into the surface layer from below and 

then expulsion out of the open boundaries. It is surprising that such Ught water would 

flow from the interior to the surface layer, but this is similar to the results of Marshall 

et al. (1999) for the entire North Atlantic. The light density-classes are characterized 

by obduction despite a downward Ekman velocity. In the intermediate density range, 

24.2 <a < 26.0, water outcrops in the southern half of the domain in winter. Diapycnal 

fluxes work against the open boundary source and reduce the amount of subduction as 

water is transported to greater density. Still, large volumes are subducted, and the open 

boundary source is the dominant player. In the densest density range, 26.0 <a < 27.0, 

diapycnal fluxes have the dominant impact on the subducted water properties. Water 

accumulates in the surface layer at these densities due to the diapycnal flux, and little 

subduction occurs despite the additional source of open boundary water. 

In the density range 25.5 < a- < 26.5, high-frequency motions produce a maximum 

diapycnal flux of 1 Sv, nearly as large as the flux of 2.5 Sv by mean fluid velocity. This 

density range encompasses the region of the Azores Current (recall Figure 4-5). Forma- 

tion of water masses depends upon the convergence of the diapycnal fluxes; Aeddy{(^) is 

convergent throughout most density classes, yielding a net formation of water by eddy 

processes. In general, the derivative oiAeddy{<^) rivals that of ^^(cr). Because diapycnal 

volume flux is directly related to subduction, this calculation quantifies the contribution 

of eddies to subduction. 

Kinematic error estimates/Sensitivity analysis 

The siurface layer volume budget is self-consistent and perfectly closed. The water-mass 

subduction rate can be computed directly, or tlirough a combination of open boundary 

and interior terms; the results match exactly. However, errors are present due to the 

use of a discretized density coordinate. In the GCM, it is assumed that the density is 
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Annual Diapycnal Volume Rux: 1/6 State Estimate 
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Figure 4-19: Annual diapycnal volume_flux due to the Eulerian velocity, Asicr), versus 
the time-averaged eddy volume flux, Aeddy{(r)- The contribution to net formation of 
water by eddies is exceeds 1 Sv. 
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Water Mass Subduction, 2 Estimate 
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Figure 4-20: Water-mass subduction rate, S{a) {solid line), and eddy subduction rate, 
Seddy{(^) [dashed line), for the 2 degree state estimate. The "X"'s mark the density- 
resolution of the diagnostics. The subduction rate is computed about a time-variable 
mixed-layer base. As the 2° state estimate has httle eddy variability, Seddy{<y) represents 
an estimate of the error of the diagnostic scheme. 

constant along an entire grid face, and the error can then be computed (Marshall et al. 

1999). In a fine resolution state estimate, the assumption of constant density along a 

grid face is good because of the small area of an individual grid cell. To get an idea of 

the maximum level of error due to density discretization, we examine the diagnostics 

of the 2° state estimate. This coarse resolution estimate does not contain energetic 

eddy motions, and this can be checked through diagnosis of Seddyio")- Figure 4-20 shows 

that eddy subduction has a root mean square value of 0.2 Sv. Most of this "eddy 

subduction" is actually error in the diagnostic scheme. In this way, an upper bound 

of 0.2 Sv is estimated for the density-coordinate analysis. Thermodynamic budgets 

(discussed later) have much larger sources of error. 

The decomposition of the circulation into mean and eddy components is troublesome 

in this region because of the lack of a stable mean velocity field. Considering the zonal 
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velocity time-series from 1° North Atlantic state estimate (Stammer et al. 2002), at 

least ten years of data is needed for a stable mean in the interior of the Subduction 

Experiment region. Figure 4-21 shows a typical velocity timeseries from the ECCO 

state estimate where the determination of the mean velocity depends upon the averaging 

interval throughout the years 1992-2002. Near the NE mooring, the situation is even 

worse. A mooring deployed by the Insitut fiir Meereskunde (Mooring Kiel 276) with a 

ten-year time series has still failed to produce statistically-significant mean velocities. 

Miiller and Siedler (1992) have conunented that variability in the 4-6 year frequency 

band is responsible for the unstable means. In the calculation of the eddy subduction 

rates here, interannual variability causes error in the estimates that swamp any other 

source. 

Another source of error in the subduction rates is due to the state estimate error 

itself. Although methods have been developed to gain the error statistics of the state 

estimate (Thacker 1989), this is computationally unfeasible for the present problem. 

However, the sensitivity of the results can be estimated by considering the multiple 

forward model runs that have been performed in the optimization process. For example, 

the transport of the Azores Current is consistently 12 Sv in. the perturbed forward run, 

with a typical deviation of less than 0.2 Sv. The path of the current varies more widely, 

with differences up to 200 km. Error in the displacement of a feature is difficult to 

represent in a simple error bar, as it usually leads to non-Gaussian statistics (Lawson and 

Hansen 2004). Based on the sensitivity of the forward model, the integrated subduction 

rate over the domain has errors on the order of 0.5 Sv, and local subduction rates near 

the Subduction Experiment moorings are accurate within 15 m/yr.' Away from the 

explicit data constraint of the eddies by the moorings, the eddy pattern of subduction is 

sometimes shifted, leading to errors of 30 - 40 m/yr which is the magnitude of the eddy 

subduction itself. As seen above, a sense of the errors in subduction rates is possible 

through a sensitivity study, even though formal error bars axe difficult to estimate. 
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Velocity Timeseries, ECCO State Estimate 
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Figure 4-21: Characteristics of the ECCO 1° state estimate velocity timeseries at 
(35° 7^,30° W). Top two panels: Time series of zonal and meridional velocity at 222 
meters depth. Bottom panel: Mean velocity as a function of averaging interval, starting 
&-om one month and extending to the average of the entire timeseries, 10 years. These 
plots show that interannual variabihty is a dominant component of the time series, and 
stable means are only obtained after long averaging periods. 
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4.4.4    A thermodynamic check on the diagnostics 

Cross-isopycnal advective flow must be accompanied by thermodynamic forcing. There- 

fore, we can compute thermodynamic transformation rates as a check on the previous 

kinematic diagnostics. In the Subduction Experiment region, transformation and sub- 

duction have similar trends in density-space (compare F{a) of Figiure 4-22 and A{a) of 

Figure 4-18). The differences between the air-sea transformation rate, F{a), and the 

diapycnal volume flux, A{a), however, are due to mixing in the ocean. Marshall et al. 

(1999) have shown that the diffusion terms, D{a,t), of the surface layer reconcile the 

differences, and close the budget, in a numerical model. Likewise here, diffusion reduces 

the residuals in the thermodynamic budget. 

The residual of the thermodynamic budget (4.23) is shown in Figure 4-23. Marshall 

et al. (1999) point out two sources of error in the budget: discretization error and 

unresolved variability. The size of the residuals, 1-2 Sv,vs. due to our lack of ability 

to accurately reconstruct the buoyancy equation offline. The diffusion term, D, was 

approximated in the diagnostics by using a constant background diffusivity, although 

the true diffusivity varied as a function of space and time. Notice that the pattern of 

the diapycnal fluxes by diffusion closely resembles the thermodynamic residual. This 

is suggestive that proper diagnosis of the diffusion terms in the state estimate would 

completely close the budget. However, the thermodynamic residuals of 1-2 5z; presently 

rival the size of the eddy subduction signal. Therefore, a check of eddy subduction rates 

through purely thermodynamic means is postponed at this time. 

4.5    Summary 

• The state estimate confirms that the mixed-layer demon, originally formulated by 

Stommel, operates in the eastern North Atlantic, and allows effective subduction 

during 45 - 60 days of the late-winter. 

• Annual subduction rates have locally-intense subduction and obduction up to 

200 m/yr.  Lateral induction by the small-scale mean circulation is responsible 
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Transformation Rates, 1/6 State Estimate 
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Figure 4-22: Annual air-sea transformation rate, F{a). 
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Figure 4-23: Residual of the thermodynamic budget. 
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for such intense subduction. 

Eulerian maps of eddy subduction show local volume fluxes up to 40 miyr, signifi- 

cantly higher than seen in parameterizations of coarse-resolution models (10 miyr, 

Spall et al. 2000). 

Isopycnal analysis suggests that eddy subduction is as large as mean subduction 

in the density class 25.8 <a < 26.2. Parameterizations which do not include this 

effect will produce biases in water-mass properties. 
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Chapter 5 

Conclusion 

A review of the thesis follows, with an emphasis on directing the interested reader 

to the detailed sections. After the recap, connections are discussed between the results 

in an effort to answer questions of a wider scope. Finally, a number of future projects 

and unresolved questions are suggested. 

5.1    Review of results 

Quantitative review of the classic theorj^ with observations reveals that our previous 

view of subduction is incomplete. A jBirst step here is to quantify the basic pattern 

of subduction in the eastern North Atlantic by using the field measurements of the 

Subduction Experiment and the TOPEX/POSEIDON satellite. In particular, relatively 

httle is known about the role of eddies in controlling subduction in the eastern half of 

the subtropical gyre. Chapter 1 reviews the state of the science and poses two questions: 

• What is the magnitude and pattern of subduction in the eastern North 

Atlantic? 

• Does eddy subduction significantly affect the total subduction rate? 

The measurements from the Subduction Experiment moorings have inadequate spa- 

tial coverage to diagnose subduction. To remedy the problem, an eddy-resolving state 
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estimate was made by bringing a 1/6° North Atlantic regional model into consistency 

with data, thus yielding an estimate of oceanic fields at the fine resolution of the model. 

Chapter 2 shows that the problem of combining a model and observations is a giant 

least-squares problem (detailed in Sections 2.2-2.4). Fine resolution and open bound- 

aries both lead to special considerations in the mathematical formulation of the problem 

(Sections 2.2.1, 2.4.1, and 2.4.2). Here, the defining and novel nature of the problem is 

the high-dimension of the state and the nonlinearity of the model. 

For oceanographic datasets, the method of Lagrange multipliers is the ideal choice to 

solve the constrained least-squares problem and form a state estimate (Section 3.2). The 

method hinges upon the availability and usefulness of the adjoint to the model. In con- 

trast to previous studies at eddy-resolution, the information from the adjoint model is 

useful for finding a consistent solution between the model and observations (Section 3.5). 

Individual eddies that are observed by the Subduction Experiment moorings can be es- 

timated (Section 3.5.5). The incorporation of a good first guess from a coarse-resolution 

model is crucial for the success of the method (Section 3.4). The findings of Chapter 3 

can be summarized as: 

• No fundamental obstacle exists to constraining an eddy-resolving model 

to observations in this region. 

• Eddies observed by the Subduction Experiment mooring array can be 

tracked in the state estimate. 

The state estimate is a dynamically-consistent, high-resolution information source 

that allows diagnosis of both total subduction and eddy subduction. The effective 

subduction period is roughly 50 days in late-winter (Section 4.4.1)., After accounting 

for the mixed-layer demon, approximately 5 Sv is subducted into the main thermocUne. 

Fine resolution estimates (1/6°) of the annual subduction rate are dominated by the 

small-scale subduction signal of magnitude up to 200 m/yr locally. Eddy subduction 

is calculated as the volume fiux of water across the moving mixed-layer base; eddy 

subduction rates as high as 40 m/yr are common (Section 4.4.2). To gauge the net effect 
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of eddies, subduction is integrated in density-space (Section 4.4.3). The contribution 

of eddies to subduction is a comparable to the total subduction in the density class 

25.5 < a < 26.5, which includes isopycnals that outcrop in the Azores Current in late 

winter (Section 4.2.5). The results of Chapter 4 are: 

• Eddy subduction rates are frequently 15% of the local subduction rate 

in the eastern North Atlantic. 

• Eddy subduction is a contributor to water mass formation, and the 

combination of Eulerian and density-space calculations suggest that the 

frontal regions, such as the Azores Current and the North Equatorial 

Current, play a large role. 

5.2    Discussion 

This thesis suggests the importance of eddies even in a region that does not include 

the western boundary of the basin. Previously, Marshall (1997) hypothesized that eddy 

subduction was important in western boundary currents, the Antarctic Circumpolar 

Current, and deep convection sites. Hazeleger and Drijfhout (2000) quantified the eddy 

contribution to subduction at 150 m/yr in an idealized Gulf Stream model. The in- 

dependent Subduction Experiment synthesis of Weller et al. (2004) likewise concluded 

that the exphcit study of eddies was necessary to close budgets and understand dynam- 

ical processes, although they did not attempt such a study. Here, frontal regions in the 

eastern half of the subtropical gyre have locally significant rates of eddy subduction. 

Relative to the energetic eddy regions suggested by Marshall (1997), eddy subduction 

rates of the eastern subtropical gyre are small, but give a non-negligible contribution to 

water mass transformation rates. Away from fronts, subduction due to eddies is negli- 

gible in the Subduction Experiment region. Nevertheless, the overall picture is one of 

an ocean with ubiquitous mesoscale energy that can not be ignored a priori. 

Eddy subduction rates are locally large, but do eddies have any net impact? The 

annual subduction rate (Section 4.4.2, Figure 4-13) has small-scale structures due to 
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lateral induction by the mean circulation. A spatial average of the small-scale signal 

in the Azores Current region gives a subduction rate of 29 m/yr, nearly equivalent 

to the non-frontal value of 27 m/yr south of the front. The expHcit calculation of 

eddy subduction (Section 4.4.2, Figure 4-14) is dominated by an alternating pattern 

of entrainment and detrainment. Spatial averages on scales larger than an individual 

eddy tend to zero by the cancellation of the dipoles. These results show that eddies do 

not have a net volume fiux into the thermocline over the domain. Instead, eddies only 

significantly affect the water mass formation rates, as seen in a density-space calculation. 

Model resolution and subduction 

What resolution is necessary to adequately model subduction? An advantage of this 

thesis is that we have used two complementary models, one at 1/6° that explicitly re- 

solves eddies, and another at 2° with the Gent-McWilliams (GM) eddy-parameterization 

scheme. The annual subduction rate in the coarse-resolution state estimate is very sim- 

ilar to the large-scale subduction rate of the fine-resolution state estimate (compare 

Figure 5-1 to Figure 4-13). Subduction by the mean circulation is well-captured in the 

eastern subtropical gyre by a coarse-resolution model. 

When considering the necessary resolution of a model run, the coarse-resolution 

simulation of Spall et al. (2000) serves as another comparison. Spall et al. (2000) 

examined the output of an ocean model with 2° resolution in the Subduction Experiment 

region. They were able to estimate the eddy-subduction rate even though eddies were 

not present in the simulation. Marshall (1997) showed that because eddy subduction 

is equivalent to a transport by the bolus velocity, an eddy parameterization scheme 

(i.e., (Gent et al. 1995)) should also parameterize eddy subduction. Spall et al. (2000) 

estimated eddy subduction rates of no larger than 10 m/yr (Spall et al. 2000) by GM, 

while the explicit calculation of our fine-resolution estimate ranged to 40 m/yr. The 

eddy-parameterization scheme may underestimate subduction because of the inherent 

two-dimensional picture upon which it is based. The Azores Current, in particular, has 

a strong retroflection at the Mediterranean Outflow and a strong countercurrent. These 
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Annual Subduction Rate: 2 State Estimate 
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Figure 5-1: Annual subduction rate calculated from a coarse-resolution state estimate. 

167 



features are complications not considered in the theoretical underpinnings of GM. From 

these results, the three-dimensional pathway of water subducted by eddies in the Azores 

Current seems difficult to parameterize. 

Because the global run of Spall et al. (2000) underrepresented the effect of eddy 

subduction, large-scale hydrogi-aphic biases are expected over time. The timescale of 

error gi'owth depends on a ratio between the eddy subduction rate and the total volume 

inventory in a paiticular density band. This scaling argument indicates that biases 

will become large after ten to twenty years of model integration. Spall et al. (2000) 

take pains to show the similarity of their model simulation to the mooring data of the 

Subduction Experiment over two years. Nevertheless, a two-year observational record 

is not long enough to test the eddy-subduction parameterization hi a coarse-resolution 

model. 

State estimation and subduction 

The use of a state estimate, rather than a model simulation alone, gi'eatly affected the 

scientific results of this thesis. Large-scale hydrographic deficiencies gave a model simu- 

lation with an unreasonable pattern of subduction. Of utmost importance, the seasonal 

cycle of the mixed layer was drastically improved by the addition of observations. The 

large-scale slope of the mixed-layer base reversed orientation under an observational 

constraint. Estimates of lateral induction were most improved by state estimation. 

Transformation rates (Figure 5-2) are also adjusted by the improved air-sea flux fields. 

At the very least, the methodology of this thesis removed the major sources of error in 

the formulation of the regional model. No reasonable diagnostics of subduction would 

have been possible in the model simulation without data constraints. 

Besides large-scale hydrographic changes, eddy-resolving state estimation changed 

the spatial pattern of eddy kinetic energy. To a lai-ge extent, relatively high values of 

kinetic energy are a prerequisite for significant eddy subduction. Thus, the inclusion 

of observations in the eddy-resolving model allowed an improved determination of the 

regions where eddy subduction is hnportant, such as the Azores Current and the North 
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Annual Air-Sea Transformation Rate: 1/6 State Estimate 
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Figure 5-2: Annual air-sea transformation rate, F, of a nearly-optimized state estimate. 
The transformation rate in a simulation forced by NCEP heat and freshwater fluxes is 
labeled FNCEP- The state estimate, where surface fluxes have been adjusted, in labeled 
FTOTAL- Adjustments by state estimation fine-tune the water mass transformation 
characteristics. 
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Equatorial Current, and those where it is not. 

5.3    Future work 

The diagnosis of eddy subduction is limited in this thesis by the short duration of the 

state estimate. One year constitutes only three to four eddy Ufecycles, and averages 

over this time interval still contain small-scale structures. Idealized model studies of 

subduction (i.e. Hazeleger and Drijfhout (2000)) usually average over twenty or more 

years of model integration for a statistical steady state. A logical next step is the 

diagnosis of eddy subduction in a reahstic model simulation with many seasonal cycles. 

Given the present computational resources, it is feasible to run a realistic model at 

eddy-resolution over twenty years in a regional configuration. 

As seen in Section 5.2, the state estimate has an improved large-scale hydrographic 

structure relative to the model simulation. Hence, subduction is captured more real- 

istically when observations are taken into account. A long-term, eddy-resolving state 

estimate is the ultimate tool to study the role of eddies in subduction. The compu- 

tational burden of finding a state estimate is perhaps 100 times greater than a model 

simulation. Nevertheless, the ECCO Group has already discussed a ten-year, 1/4° state 

estimate, so the future may not be far away. 

Besides the computational requirements of state estimation, a long record of obser- 

vations is also necessary. For a nonlinear system, it is likely that a dense supply of data 

is required to keep the state estimate on track. The continuous supply of sea surface 

height data from first TOPEX/POSEIDON, and now the JASON satellite, is a major 

boost to the data stream. Field campaigns have increasingly focused on new forms 

of instruments, such as the global array of floats in the ARGO experiment. With new 

forms of measurements, new methods may be needed to incorporate the information into 

a state estimate. For the future, the observational design problem must be explicitly 

addressed if the ocean is to be monitored over a wide range of space and time scales. 

The methodology of state estimation will be tested in the case of long-duration eddy- 
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resolving estimates. Regional models are increasingly controlled by the open boundary 

conditions over long times, but it is difficult to model open boundaries accurately. Global 

models also serve as a test because of differing physical regimes in different regions. 

Western boundary currents, open ocean deep convection, and sea-ice formation are 

nonlinear processes and probably represent necessary components of a realistic global 

ocean model. In the face of these strong nonlinear features, the usefulness of adjoint- 

computed gradients can be questioned (Lea et al. 2000; Kohl and Willebrand 2002). 

The method of Lagrange multipUers may not be applicable blindly. 

The scientific field of state estimation evolved with low-dimensional, linear problems. 

Modifications are necessary for the oceanographic setting because of the high-dimension 

and nonlinearity of the equations of motion. Two preliminaiy adjustments were im- 

plemented in this thesis. One, the size of the control space was effectively reduced by 

nondiagonal weighting matrices. Spatial and temporal correlation in the control fields 

means that the effective degi'ees of freedom, and hence, size of the search space, is 

lessened. Two, Section 3.5.3 used a cost function which enforced the model to follow 

only the large-scale observational signal. This could be called a multiscale method. The 

knowledge of spatial and temporal correlations could be used more fully in state estima- 

tion, and the steps taken here are just a start. As a final note, control theory was the 

original source of the state estimation methodology. It is logical to continue to apply 

ideas borrowed from control theory to the high-dimensional, nonlinear world of fluid 

dynamics and climate science. 
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Appendix A 

MIT General Circulation Model 

equations 

This is a brief introduction to the formulation of the primitive equations used by 

the MIT General Circulation Model (MIT GCM). Marshall et al. (1997a,b) described 

the model in greater detail. Here, the model is used with the hydrostatic form of the 

primitive equations under the Boussinesq assumption. The model conserves horizontal 

and vertical momentum, volume, heat and salt. With the equation of state and the free 

surface equation, seven equations constitute the core dynamics of the numerical model. 

^   =   _Z£_2Qxu+lv.r. + ..V^u+^^.|^ (A.l) 
Dt po Po 9z    dz 

dzP =  -gp (^-2) 

d,w   =   -V-u (A.3) 

p   =   p(e,S,z) (A.6) 

a,)(   =   -V ■ /   udz + {P- B) (A.7) 
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In the horizontal momentum equation (A.l), u is the 2-component horizontal velocity, p 

is the deviation of the pressure from a resting ocean of density po, ^ is the rotation rate 

of Earth, V is a horizontal operator, r represents wind stress at the surface, and v is 

viscosity. The vertical momentum equation (A. 2) reduces to hydrostatic balance, where 

g is gravity. Conservation of mass becomes conservation of volume (A.3) under the 

Boussinesq assumption, equally expressed as nondivergence of the three-dimensional 

flow. Heat, directly related to potential temperature, Q, is conserved in the absence 

of diffusion, K, and external heating, EQ (A.4). Sahnity, 5, is also conserved in the 

absence of diffusion and freshwater forcing, Ep (A.5). The equation of state {A.6) is 

a nonlinear polynomial in which density depends on temperature, sahnity, and depth. 

The sea surface height r] evolution, described by (A.7), introduces a new prognostic 

equation in the hydrostatic PE's. (P - E) is the volume input by excess precipitation 

over evaporation. The general circulation model is nonlinear due to the equation of 

state, as well as the advection terms hidden in the total derivatives, ;^. In sum, there 

are 7 dependent variables and 7 equations for theii- evolution. 

The KPP model (as discussed in Section 1.2.2) is appended to the model. It diagnoses 

turbulent viscosity and diifusivity which is then used in the prognostic model equations. 

Vz = i^zix, y, z, p, EQ, EF) (A.8) 

Kz=-K,{x,y,z,p,EQ,EF) (A.9) 

Solution Method 

The hydi-ostatic primitive equations are discretized on a staggered grid, the C grid of 

Arakawa (1977). The bottom boundary has no-slip conditions, but the lateral solid 

boundaries have slip conditions. Potential temperature, salinity, horizontal velocity, 

and sea surface height are prognostic quantities, stepped forward in time by an Adams- 

Bashforth discretization. Vertical velocity and density are diagnostic, calculated by 

Eqs. (A.2,A.6). 

Pressure is also a diagnostic variable, but it is not explicitly described by the previous 
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equations. To form an explicit equation, split pressure into two components, surface and 

hydrostatic: 
/•O 

p{x,y,z)^Ps{x,y)+pH{x,y,z)^gpor) +J  gp dz, (A.IO) 

where hydrostatic balance makes a direct connection between surface pressure and sea 

surface height. Nevertheless, the surface pressure still does not have an expHcit equa- 

tion which will guarantee a nondivergent flow. To remedy this problem, the horizontal 

momentum equation is written in a simplified form, where pressure is split into two 

components, and G„ takes the place of the extra right hand terms: 

^ = .YPl + G^ = -gVv + G,, (A.11) 
at po 

with use of the Unearized definition of surface pressure. (Equation A.IO). Now, sub- 

stituting the previous equation into the time derivative of the free surface equation 

(Equation A.7) yields an elliptic equation 

V • (gHVrj) + ^ ='^ ' J^^-d' + ^(^ " ^) (A-^^) 

where the next to last term should vanish. In practice, the new velocity u is not 

perfectly nondivergent, so the term is kept and it leads to adjustment in the pressure 

field. Equation (A. 12) is discretized with a backwards implicit scheme, and is solved 

iteratively when the boundary is irregular. 

The boundary conditions for the elliptic operator are modified with open boundaries. 

With a closed boundary, the operator has homogeneous Neumann boundary conditions, 

Vp • n = G • n = 0. When the domain boundaries are open, one new term is added to 

the elliptic equation boundary conditions; it is a term that allows for a change in total 

volume inside the domain. Zhang et al. (1999) gave a full discussion of the modification, 

but in a technical sense, it is a very small change to the numerical code. 
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Appendix B 

Relationship of the forward and 

adjoint state 

The Lagrange multipliers are frequently called the adjoint state because they are 

stepped backwards in time by the adjoint model, in analogy with the variables stepped 

by the forward model, the forward state. The analogy is made more complete when con- 

sidering that the number of Lagrange multipliers equals the number of state variables 

at any time. Equivalently, the adjoint model has the same dimension as the forward 

model. Algorithmically-diflFerentiated numerical code makes explicit the connection be- 

tween the forward and adjoint state; for example, Marotzke et al. (1999) show that the 

adjoint state has sensitivity information directly related to the corresponding forward 

state. With the mathematical formulation of the Lagrangian function, equation (3.3) of 

Chapter 3, a tight relationship still exists but is not clearly seen. 

The first difference between the numerical adjoint code and the formal mathematics 

is the status of the adjoint state at time t = 0. In the numerical code, /i(0) exists, but it 

is not defined for the equations of Chapter 3. With a few extra definitions, the adjoint 

state can be extended formally to i = 0. Consider the first time step of the model: 

x(l) = /;[x(0),Bq(0),ru(0)]. (B.l) 
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Upon closer inspection, this time step has two parts: the speciiication of the initial 

conditions, then the forward step of the model dynamics. The specification of the initial 

conditions of the forward model could be written as a separate model step: 

x(0) = q,{0) + Ui(0) (B.2) 

where qi(0) is the first guess of the initial conditions, and Ui(0) is a control adjustment 

to the initial conditions. Furthermore, this statement could be added explicitly to the 

Lagrangian function with a preceding Lagrange multiplier: 

J = til [E(t)x(t) - y(t)]^W(t) [E(t)x(«) - y{t)] 

+ Y.to   n{tfQ{t)n{t) 

- Y^ Mt + If {x(i + 1) - £[x(t),Bq(t),ru(t)]} 

-/x(0)^{x(0) - qi(0) - u,(0)}. (B.3) 

where /Lt(0) will be shown to be a judicious choice for the new Lagrange multiplier. The 

adjoint equation for the timestep from t = 1 to t = 0 is slightly changed. This adjoint 

model timestep is recovered by setting the derivative of J with respect to x(0) equal to 

zero: 

^■^   =._;^(0) + (-^)V(l) = 0, (B.4) 
dx{o)     ^' '   'ax(o) 

and rearranging, 

With a backwards sweep of the adjoint model, the Lagrange multipUer at i = 0 is 

computable. The meaning of /i(0) is seen as: 

^^    =M(0), (B.6) 
dqM 

the sensitivity of the cost function with respect to the initial conditions. This relation- 

ship, derived through the formal mathematics, is easily seen in the numerical code. 
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A similar idea can be used at any timestep. Consider an additive perturbation to the 

state as a hypothetical control variable u*(t), which is not penalized in the Lagrangian 

function and not part of the original controls, u(t). The additive perturbation is applied 

in the model: 

x(t + 1) = £[x(t), Bq(t), ru(t)] + u*(t + 1) (B.7) 

The Lagrangian function is now rewritten as: 

J = Elii [E(f)x{t) - y{trw{t) [E(t)x(t) - y(t)] 

+ Eto' u(t)^Q{t)u(t) 

- Elio' Kt + ifMt + 1) - £[x(f),Bq{t), ru(f)] - u*(i + 1)} (B.8) 

The meaning of the Lagrange multipliers for times Kt <tf is elucidated: 

dJ 
du*{t) 

= Kt). (B.9) 

The Lagrange multipUer is the sensitivity of the cost function to an additive perturbation 

of the state at its respective time. In other words, the Lagrange multiplier gives the 

influence of each state element as if it were independently adjustable. 

The previous result is important when interpreting the time history of the adjoint 

state (i.e.. Figure 3-17). The adjoint state is uiterpreted as the sensitivity of J to x(t). 

This sensitivity has the same magnitude as the sensitivity to initial conditions of a model 

trajectory oitf — t time units. 
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Appendix C 

Chaotic dynamics of the forced, 

nonHnear pendulum 

The forced, nonlinear pendulum is a simple system that is chaotic. If periodic forcing 

is added to the nonUnear pendulum, its dynamics are governed by: 

_ + ,_ + «„(9) = ^ (C.1) 

where T = g cos(u>dt), and 9 is a damping coefficient. The continuous-time state space 

realization of the system is: 

-j-   =   —quj — $in{6) + g cos{<p) (C2) 
at 

f   =   ^ (C.3) 
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Perturbation growth with time 

150 

150 
time [s] 

Figure C-1: Growth of an initial perturbation in the forced, nonhnear pendulum. Upper. 
The time evolution of the displacement angle, 0, for two pendulums with initial angle 
separation of 0.01 radians. The model trajectories diverge after fifty seconds due to 
chaotic dynamics. Lower. The time evolution of the magnitude of an infinitesimal 
perturbation of ^ as calculated by the tangent linear model. The growth is exponential 
for an indefinite period of time, \5e{t)\ = O.Ole^*, characteristic of a chaotic system. 

where the state includes 6 as the displacement angle, u the angular velocity, and </) the 

phase of the forcing. The linearized continuous-time propagator is: 

[dx{t) 

I -q   -cos{9)   -g sin{4>)  * 

V 

1 

0 

0 

0 

0 

0 ) 

(C.5) 

which has a maximum eigenvalue of A = 0.67 for the sample point [w, 6, (p] = [1.29, -2.96,333.35]. 

The dynamics are unstable at this point and many other points in phase space. 

As an aside, the previous argument assumes that the nonlinear model is Unearized 

around a fixed state, but this is not accurate for a dynamic model. Instability of the 

linearized model is not a sufiicient condition for chaos and unbounded exponential growth 

of perturbations. The magnitude of the difference between two trajectories is actually 

determined by the greatest singular value of the linearized model. For the pendulum, 

this explains why the perturbation's magnitude grows with an exponent of A = 0.13 

(Figure C-1, lower panel) instead of the largest eigenvalue, A = 0.67, at our sample 
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point. Furthermore, Lyapunov exponents are related to the singular values of the matrix 

over long integration times, and they describe the exponential divergence of neighboring 

particles around the entire state space {Palmer 1996). The nonlinear pendulum does 

have a positive Lyapunov exponent, a more exact test for chaotic dynamics. 

Nearly-nondifferentiable dynamics can result from chaos. Here, chaos is defined as 

the sensitive dependence on initial conditions (Lorenz 1963; Gauthier 1992). A slight 

perturbation to the state, [w,^, 0], means that the model never returns to the original 

trajectory. Although the cost function itself has a physical bound, no bound exists for the 

gradients of the cost function of a long time-integration of a chaotic model (Figure C- 

2). Eventually, the Lagrange multipKers are so large that they are incalculable by a 

numerical implementation of the adjoint equations; the model is nearly nondifferentiable. 

Nonlinear, Chaotic Pendulum: Lagrange multipliers 

10'  ■ 

10 

1,10   ■ 

10 

10 15 20 
Seconds 

25 30 

Figure C-2: The evolution of the Lagrange multipliers of the nonlinear, chaotic pendulum 
{g = 1.15) with reversed time. The maximum Lagrange multiplier, l|At(i)||oo, increases 
exponentially. Compare to Figiu:e 3-18. 
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Appendix D 

Isopycnal analysis in a z-coordinate 

state estimate 

Isopycnal analysis of the z-coordinate (or level coordinate) state estimate follows the 

numerical model analysis in Appendices A and B of Marshall et al. (1999). A few 

modifications have been made to the analysis here, in an effort to reduce diagnostic 

errors and in order to apply the treatment to a regional model. 

One extension to the work of Marshall et al. (1999) is discussed next. The water- 

mass subduction rate is never explicitly calculated in Marshall et al. (1999). Here, 

the exact diagnosis is more complicated due to open boundary sources. The recipe for 

calculating M{a,t) follows. Define the base of the control volume, H{x,y), to be the 

depth of the mixed layer. Outside of the regional boundaries, set H{x, y) = 0. The 

volume flux at density less than a across the surface defined by H{x,y) is M{a,t). 

There are two sources to M{a,t): 

Mia,t) = MB{a,t)-Sia,t), (D.l) 

the volume flux across the lateral boundary, MB{o;t), and the volume flux across the 

horizontally-varying bottom boundary, S{a,t). When diagnosed on the C-grid of the 

MIT GCM and state estimate, 
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M{a,t) 

= Eijk        u{i, j, k, t) ■ ay,{i - 1/2, j, k) ■ UMLU((^n,i, j, k, t) 

+^ijk v{i,j - 1/2, k, t) ■ a^,{i,j - 1/2, k) ■ UMLA(^n, i,j, k, t) 

+Eyfc w{i,j,k-l/2,t)-axyii,j)-UMLjc^n,hJ,k,t), (D.2) 

where axy,xz,yz is the area of the respective grid face and UMLU..,W is a boxcar function. 

The velocity is defined on a staggered grid relative to the tracer and density fields. 

Hence, coordinates with 1/2 refer to grid faces, not the center of grid cells. Density 

values must be interpolated to grid faces, and a simple linear scheme is used here. Prom 

above, the boxcar function, UML^, for example, is defined by: 

Ti.MLu{<^n,hJ,k,t) 

crii- l,j,k,t) < cr„ 

H{i-l,j)<z{k)<Hii,j) 

a{i-l,j,k,t) <o-„ 

Hii-l,j)>z{k)>HiiJ) 

otherwise 

(D.3) 

Boxcar functions for the other components of velocity follow in a similar way. 

S{a,t) must still be isolated from M{cr,t). Replace the full velocity field with the 

open boundary velocity field, {u,v,w) = iuB,VB,0), and reevaluate Equation (D.2) to 

estimate the open boundary volume flux, MBicr,t). Then, the water-mass subduction 

rate is deduced by subtraction (Equation (D.l)). 

To ehminate any linear interpolation in density space, the analysis of the diapycnal 

advective flux has been modified. Instead of computing the flux across the bounding 

isopycnals of a density bin, we compute the advective flux across the same set of density 

contours that are used in Equation (D.2). Then, the equation for A{a,t) is identical to 
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Appendix A of Marshall et al. (1999), except the boxcar function is redefined: 

Ily,{an,iJ,k,t)) = < 

1      if 

-1    if { 

a{i-lj,k,t) < an <cr{i,j,k,t) 

z{k)<H{i,j) 

z{k)<Hii-l,j) 

a{i, j, k, t)<an< a{i - 1, j, A;, t) 

z{k)<H{i,j) 

z{k)<H{i-l,3) 

otherwise 

(D.5) 

187 



References 

Adcroft, A., and D. Marshall, 1998: How slippery are piecewise-constant coastlines in numer- 

ical ocean models?, Tellus, 50 (1), 95-108. 

Adcroft, A., 1994: Numerical algorithms for use in a dynamical model of the ocean, Ph.D. 

thesis. Imperial College London. 

Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes of 

the UCLA general circulation model, Methods in Computational Physics, 17, 174-267. 

Baker, G. L., and J. P. Gollub, 1990:  Chaotic Dynamics: An Introduction, Cambridge Uni- 

versity Press. 

Barth, N., 1992: Oceanographic experiment design IL Genetic algorithms, J. Atm. Oceanic. 

Tech., 9 (4), 434-443. 

Barth, N., and C. Wunsch, 1990: Oceanographic experiment design by simulated annealing, 

J. Phys. Oceanogr., 20, 1249-1263. 

Bennett, A., and P. E. Kloeden, 1981:   The iU-posedness of open ocean models, J. Phys. 

Oceanogr., 12, 1004-1018. 

Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere, Cambridge University 

Press, 234 pp. 

Brink, N. J., K. A. Moyer, R. P. Trask and R. A. Weller, 1995: The Subduction Experiment: 

Mooring field program and data summary. Woods Hole Oceanographic Institution, Tech. 

rep. 

Broecker, W., 1991: The great ocean conveyor. Oceanography, 4, 79-89. 

Bugnion, V., 2001: Driving the ocean's overturning: An adjoint sensitivity study, Ph.D. thesis, 

Massachusetts Institute of Technology. 

Cazenave, A., 2002: Global trends in sea level. Presented at WOCE and Beyond, San Antonio, 

TX, 21 November 2002. 

Chang, P., L. Ji, H. Li and M. Flugel, 1996: Chaotic dynamics versus stochastic processes in 

El Nino-Southern Oscillation in coupled ocean-atmosphere models, Physica D, 98, 301-320. 

Charney J. G., R. Fjortoft and J. von Neumann, 1950: Numerical integration of the barotropic 

voriticity equation, Tellus, 2, 237-254. 

Chelton, D. B., S. K. Esbensen, M. G. Schlax, N. Thum, M. H. Freihch, F. J. Wentz, C. L. 

Gentemann, M. J. McPhaden and P. S. Schopf, 2001:  Observations of coupling between 

188 



surface wind stress and sea surface temperature in the eastern Tropical Pacific, J. Climate, 

14, 1479-1498. 

Cushman-Rx)isin, B., 1987: Subduction, in Aha Huliko'a Proceedings of the University of 

Hawai'i, edited by P. Muller, and D. Henderson, pp. 181-196. 

Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North 

Atlantic Oscillation, J. Climate, 15, 3280-3290. 

Dahleh, M. A., and I. Diaz-Bobillo, 1999: Control of Uncertain Systems: A Linear Program- 

ming Approach, Pergamon Press. 

Dantzig, G. B., A. Orden and P. Wolfe, 1955: Generalized simplex method for minimizing a 

linear form under linear inequality restraints, Pacific J. Math., 5, 183-195. 

Davis, L., 1991: Handbook of Genetic Algorithms, p. 385, Van Nostrand Reinhold, New York. 

Defant, A., 1936: The Troposphere: Scientific Results of the German Atlantic Expedition of 

the Research Vessel 'Meteor' 1925-1927, Verlag von Walter de Gruyter and Co., Berlin and 

Leipzig. 

Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific 

termperature variations, J. Climate, 8(6), 1677-1680. 

Farrell, B. F., 1989: Optimal excitation of baroclinic waves, J. Atmos. Sci., 46, 1193-1206. 

Farrell, B. F., and A. M. Moore, 1993: An adjoint method for obtaining the most rapidly 

growing perturbations to oceanic flows, J. Phys. Oceanogr., 22, 338-349. 

Ferron, B., and J. Marotzke, 2003: Impact of 4D-variational assimilation of WOCE hydrogra- 

phy on the meridional circulation of the Indian Ocean, Deep Sea Research Part II: Topical 

Studies in Oceanogmphy, 50, 2005-2021. 

Follows, M. J., and J. C. Marshall, 1994: Eddy driven exchange at ocean fronts. Ocean Mod- 

elling, 102, 5-9. 

Follows, M. J., and J. C. Marshall, 1996: On models of bomb ^^C in the North Atlantic, J. 

Geophys. Res., 101, 22577-22582. 

Foster, I., 1995: Designing and Building Parallel Programs, Addison-Wesley, Also published 

on the Web as Designing and Building Parallel Programs (Onhne). 

Fu, L.-L., B. Cheng and B. Qiu, 2001: 25-day period large-scale oscillations in the Argentine 

Basin revealed by the TOPEX/Poseidon altimeter, J. Phys. Oceanogr., 31, 506-516. 

Fu, L.-L., E. Christensen, C. A. Yamarone, M. Lefebvre, Y. Menard, M. Dorrer and P. Escudier, 

189 



1994: TOPEX/POSEIDON mission overview, J. Geophys. Res., 99 (C12), 24369-24381. 

Fukumori, L, J. Benveniste, C. Wunsch and D. B. Haidvogel, 1993: Assimilation of sea sur- 

face topography into an ocean circulation model using a steady-state smoother, J. Phys. 

Oceanogr., 23, 1831-1855. 

Galanti, E., and E. Tziperman, 2003: A mid-latitude ENSO teleconnection mechanism via 

baroclinically unstable Long Rossby Waves, J. Phys. Oceanogr., 33, 1877-1888. 

Garrett, C, K. Speer and E. Tragou, 1995: The relationship between water mass transforma- 

tion and the surface buoyancy flux, with application to Phillips' Red Sea model, J. Phys. 

Oceanogr., 25, 1696-1705. 

Gauthier, P., 1992: Chaos and quadri-dimensional data assimilation: A study based on the 

Lorenz model, Tellxis, 44A, 2-17. 

Gent, P., J. Willebrand, T. J. McDougall and J. C. McWilliams, 1995: Parameterizing eddy- 

induced transport in ocean circulation models, J. Phys. Oceanogr., 25, 463-474. 

Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography, 

in Advances in Geophysics, vol. 33, pp. 141-266, Academic Press. 

Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction, ACM Trans. Math. 

Software, 24 (4), 437-474. 

Gilbert, J. C., and C. Lemarechal, 1989: Some numerical experiments with variable-storage 

quasi-Newton algorithms. Math. Program., 45, 407-435. 

Gilcrest, B., and G. Cressman, 1954: An experiment in objective analysis, Tellus, 6, 308-318. 

Gill, A. E., J. S. A. Green and A. J. Simmons, 1974: Energy partition in the large-scale ocean 

circulation and the production of mid-ocean eddies, Deep-Sea Res., 21, 499-528. 

Gill, P. E., W. Murray and M. H. Wright, 1986: Practical Optimization, p. 401, Academic 

Press. 

Griewank, A., and A. Walther, 2000: Revolve: An implementation of checkpointing for the 

reverse or adjoint mode of computational differentiation, ACM Trans. Math. Software, 26 

(1)- 

Griewank, A., 2000: Evaluating Derivatives: Principles and Techniques of Alogorithmic Dif- 

ferentiation, p. 369, Society for Industrial and Apphed Mathematics, Philadelphia. 

GrifRes, S. M., and K. Bryan, 1997: Predictability of North Atlantic interdecadal variability, 

Science, pp. 181-184. 

190 



Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on 

exchanges between the tropics and extratropics, Science, 275 (7), 805-807. 

Gunson, J. R., and P. Malanotte-Rizzoli, 1996a: Assimilation studies of open-ocean flows 1. 

Estimation of initial and boundary conditions, J. Geophys. Res., 101 (C12), 28,457-28,472. 

Gunson, J. R., and P. Malanotte-Rizzoli, 1996b: Assimilation studies of open-ocean flows 2. 

Error measures with strongly nonlinear dynamics, J. Geophys. Res., 101 (C12), 28,473- 

28,488. 

Haidvogel, D., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling, p. 344, Impe- 

rial CoUege Press, London. 

Hall, M. C. G., D. G. Cacuci and M. E. Schlesinger, 1982: Sensitivity analysis of a radiative- 

convective model by the adjoint method, J. Atmos. ScL, 39, 2038-2050. 

Hartmann, D. L., 1994: Global Physical Climatology, Academic Press, 411 pp. 

Hazeleger, W., and S. S. Drijfhout, 2000: Eddy subduction in a model of the subtropical gyre, 

J. Phys. Oceanogr., 29, 266-288. 

Hernandez, P., P.-Y. Le Traon and N. H. Earth, 1995: Optimizing a drifter cast strategy with 

a genetic algorithm, J. Atm. Oceanic. Tech, 12, 330-345. 

HiU, C., V. Bugnion, M. Follows and J. Marshall, 2004: Evaluating carbon sequestration effi- 

ciency in an ocean circulation model by adjoint sensitivity analysis, J. Climate, Submitted. 

Holland, J., 1975: Adaptation in Natural and Artificial Systems, University of Michigan Press, 

Ann Arbor. 

Huang, R. X., 1990: On the three-dimensional structure of the wind-driven circulation in the 

North Atlantic, Dyn. Atmos. Oceans, 15, 117-159. 

Huang, R. X., and S. Russell, 1995: Ventilation of the subtropical North Pacific, J. Phys. 

Oceanogr., 24, 2589-2605. 

Isehn, C. O., 1939: The influence of vertical and lateral turbulence on the characteristics of 

the waters at mid-depths. Trans. Am. Geophys. Un., 20, 414-417. 

Jenkins, W. J., 1987: ^H and ^He in the beta triangle: Observations for gyre ventilation and 

oxygen utilization rates, J. Phys. Oceanogr., 17, 763-783. 

Jenkins, W. J., 1988: Studying subtropical thermochne ventilation and circulation using Tri- 

tium and ^He, J. Geophys. Res., 103, 15817-15813. 

Jia, Y., 2000: Formation of an Azores Current due to Mediterranean overflow in a modelling 

191 



study of the North Atlantic, J. Phys. Oceanogr., 103, 2342-2358. 

Joyce, T. M., J. R. Luyten, A. Kubryakov, F. B. Bahr and J. S. PaUant, 1998: Meso- to large- 

scale structure of subducting water in the subtropical gyre of the eastern North Atlantic 

ocean, J. Phys. Oceanogr., 28, 40-61. 

Kalnay E., and coauthors, 1996: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. 

Meteor. Soc, pp. 77431-77437. 

Kohl, A., and J. Willebrand, 2002:   An adjoint method for the assimilation of statistical 

characteristics into eddy-resolving ocean models, Tellus, 54 (4), 406-425. 

Kohl,   A.,   and J.  Willebrand,   2003:    Variational assimilation  of SSH variability from 

TOPEX/POSEIDON and ERSl into an eddy-permitting model of the North Atlantic, J. 

Geophys. Res., 108 (C3), 3092. 

Large, W., J. C. McWiUiams and S. C. Doney, 1994: Oceanic vertical mixing: A review and 

model with nonlocal boundary layer parameterization. Rev. of Geophys., 32, 363-403. 

Lawson, W. G., and J. A. Hansen, 2004: Displacement error models and ensemble-based data 

assimilation, Submitted to Mon. Wea. Rev. 

Lazar, A., T. Inui, P. Malanotte-Rizzoh, A. J. Busalacchi, L. Wang and R. Murtugudde, 

2002: Seasonahty of the ventilation of the tropical Atlantic thermocline in an ocean general 

circulation model, J. Geophys. Res., 107 (C8), 10.1029/2000JC000667. 

Lea, D., 2001:  Joint assimilation of sea surface temperature and sea surface height, Ph.D. 

thesis, University of Oxford. 

Lea, D. J., M. R. Allen and T. W. N. Haine, 2000: Sensitivity analysis of the chmate of a 

chaotic system, Tellus, 52A, 523-532. 

LeDimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation 

of meteorological observations: Theoretical aspects, Tellus, 38A, 97-110. 

Ledwell, J. R., A. J. Watson and C. S. Law, 1993:   Evidence for slow mixing across the 

pycnochne from an open-ocean tracer-release experiment. Nature, 364, 701-703. 

Lemoine, F., D. E. Smith, L. Kunz, R. Smith, E. C. Pavlis et al., 1997:  The Development of 

the NASA GSFC and NIMA Joint Geopotential Model, lAP Symposium, Springer-Verlag, 

in Proc. Int. Symp. Gravity, Geoid and Marine Geodesy. 

Levitus, S. R., and T. P. Boyer, 1994:  World Ocean Atlas 1994: Temperature, U. S. Dept. of 

Commerce. 

192 



Levitus, S. R., R. Burgett and T. Boyer, 1994: World Ocean Atlas 1994: Salinity, U. S. Dept. 

of Commerce. 

Lorenc, A. C, 1986: Analysis methods for numerical weather prediction, Q. J. R. Meteorol. 

Soc, 112, 1177-1194. 

Lorenz, E. N., 1963: Deterministic, nonperiodic flow, J. Atmos. Sci., 20, 130-141. 

Luenberger, D. G., 1984: Linear and Nonlinear Programming, Addison-Wesley, 491 pp. 

Luyten, J. R., J. Pedlosky and H. Stommel, 1983:   The ventilated thermocline, J. Phys. 

Oceanogr., 13, 292-309. 

Malanotte-Rizzoli, P., K. Hedstrom, H. Arango and D. B. Haidvogel, 2000: Water mass path- 

ways between the subtropical and tropical ocean in a climatological simulation of the North 

Atlantic ocean circulation, Dyn. Atmos. Oceans, 32, 331-371. 

Malanotte-Rizzoli, R, and W. R. Holland, 1986: Data constraints applied to models of the 

ocean general circulation. Part I: The steady case, J. Phys. Oceanogr., 16, 1665-1687. 

Marchesiello, P., J. C. McWilliams and A. Shchepetkin, 2001: Open boundary conditions for 

long-term integration of regional oceanic models, Ocean Modelling, 3, 1-20. 

Marotzke, J., R. Giering, K. Q. Zhang, D. Stammer, C. Hill and T. Lee, 1999: Construction of 

the adjoint MIT ocean general circulation model and application to Atlantic heat transport 

sensitivity, J. Geophys. Res., 104, 529-547. 

Marotzke, J., and C. Wunsch, 1993: Finding the steady state of a general circulation model 

through data assimilation: Application to the North Atlantic Ocean, J. Geophys. Res., 98, 

20149-20167. 

Marshall, D., 1997: Subduction of water masses in an eddying ocean, J. Mar. Res., 55, 201- 

222. 

Marshall, D., and J. Marshall,  1995:   On the thermodynamics of subduction,  J. Phys. 

Oceanogr., 25, 138-151. 

Marshall, J., A. Adcroft, C. Hill, L. Perelman and C. Heisey, 1997a: A finite volume, incom- 

pressible Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. 

Res., 102, 5753-5766. 

Marshall, J., C. Hill, L. Perehnan and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and 

nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733-5752. 

Marshall, J., D. Jamous and J. Nilsson, 1999: Reconcihng thermodynamic and dynamic meth- 

193 



ods of computation of water-mass transformation rates, Deep-Sea Res., 46, 545-572. 

Marshall, J. C, and A. J. G. Nurser, 1991:   A continuously stratified thermocline model 

incorporating a mixed layer of variable thickness and density, J. Phys. Oceanogr., 21, 1780- 

1792. 

Marshall, J. C, A. J. G. Nurser and R. G. Williams, 1993: Inferring the subduction rate and 

period over the North Atlantic, J. Phys. Oceanogr., 23, 1315-1329. 

McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean 

circulations: The subtropical cell, J. Phys. Oceanogr., 24, 466-497. 

McShane, E. J., 1989: The calculus of variations from the beginning through to optimal control 

theory, SIAM J. Control Optim., 27, 916-939. 

Metropohs, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, 1953: Equations of 

state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092. 

Miller, R. N., M. Ghil and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear 

systems. Journal of the Atmospheric Sciences, 51, 1037-1056. 

Montgomery, R. B., 1938: Circulation in upper layers of southern North Atlantic deduced with 

use of isentropic analysis, Papers Phys. Oceanogr. Met, 6 (2). 

Moyer, K. A., and R. A. Weller, 1995: Observations of surface forcing from the Subduction 

Experiment: A comparison with global model products and climatological datasets, J. Cli- 

mate, 10, 2725-2742. 

Muller, T. J., and G. Siedler, 1992: Multi-year time series in the eastern North Atlantic Ocean, 

J. Mar. Res., 50, 63-98. 

Munk, W., 2002:  Twentieth century sea level:  An enigma, P. Natl. Acad. Set. U.S.A., 99 

(10), 6550-6555. 

Munk, W., 2003: Ocean freshening, sea level rising. Science, 300 (5628), 2041-2043. 

Nakamura, N., 1995: Modified Lagrangian-mean diagnostics of the stratospheric polar vortices. 

Part I. Formulation and analysis of GFDL,SKYHI GCM, J. Atmos. ScL, 52, 2096-2108. 

New, A. L., Y. Jia, M. Coulibaly and J. Dengg, 2001: On the role of the Azores current in the 

ventilation of the North Atlantic Ocean, Prog. Oceanogr., 48, 163-194. 

Nurser, A. J. G., and J. C. Marshall, 1991: On the relationship between subduction rates and 

diabatic forcing of the mixed layer, J. Phys. Oceanogr., 21, 1793-1802. 

O'Brien, J. J., 1986: Advanced Physical Oceanogmphy Numerical Modelling, p. 608, D. Reidel, 

194 



Dordrecht. 

Oliger, J., and A. Sundstrom, 1978: Theoretical and practical aspects of some initial value 

boundary in fluid dynamics, SIAM J. App. Math., 35, 419-446. 

Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows, J. Comput. 

Phys., 21, 251-269. 

Pallant, J. S., F. B. Bahr, T. M. Joyce, J. P. Dean and J. R. Luyten, 1995: Subduction in the 

subtropical gyre: Seasoar cruises data report, Woods Hole Oceanographic Institution, Tech. 

rep. 

Palmer, T. N., 1996:  Predictability of the Atmosphere and Oceans: From Days to Decades, 

chapter 3, pp. 83-156, NATO ASI Series, Springer, in Decadal Climate Variability: Dynam- 

ics and Predictability. 

Parrilla, G., A. Lavin, H. Bryden, M. Garcia and R. Millard, 1994: Rising termperatures in 

the subtropical North Atlantic over the past 35 years. Nature, 369, 48-51. 

Pedlosky, J., 1987: Geophysical Fluid Dynamics, Springer, 710 pp. 

Pedlosky, J., 1996: Ocean Circulation Theory, Springer, 464 pp. 

Peixoto, J., and A. H. Oort, 1992: Physics of Climate, p. 520, AIP Press. 

Pond, S., and G. L. Pickard, 1983: Introductory Dynamical Oceanography, p. 329, Pergamon 

Press. 

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992: Numerical Recipes: 

The Art of Scientific Computing, p. 963, 2nd ed. Cambridge University Press. 

Price, J. F., 2001: Subduction, in Ocean Circulation and Climate: Observing and Modelling 

the Global Ocean, pp. 357-371, Academic Press. 

Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis 

using optimum interpolation, J. Climate, 7, 929-948. 

Rhines, P. B., and W. R. Young, 1982:  Homogenization of potential vorticity in planetary 

gyres, J. Fluid Mech., 122, 347-367. 

Robbins, P. E., J. F. Price, W. B. Owens and W. J. Jenkins, 2000: The importance of lateral 

diffusion for the ventilation of the lower thermochne in the subtropical North Atlantic, J. 

Phys. Oceanogr., 30, 67-89. 

Robinson, A. R., and D. Haidvogel, 1980: Dynamical forecast experiments with a barotropic 

open ocean model, J. Phys. Oceanogr., 10, 1909-1928. 

195 



Robinson, A. R., and H. Stommel, 2000: The ideal fluid thermocline, J. Phys. Oceanogr., 30, 

67-89. 

Roemmich, D., and C. Wunsch, 1984: Apparent change in the climatic state of the deep North 

Atlantic Ocean, Nature, 307, 447-450. 

Rudnick, D. L., and J. R. Luyten, 1996: Intensive surveys of the Azores Front. Part I: Tracers 

and dynamics, J. Geophys. Res., 101 (Cl), 923-939. 

Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis, Mon. Wea. Rev'., 

98, 875-883. 

Sausen, R., K. Barthel and K. Hassehnann, 1988: Coupled ocean-atmosphere models with flux 

corrections, Clim. Dyn., 2, 154-163. 

Schroter, J., U. Seller and M. Wenzel, 1993: Variational assimilation of GEOSAT data into an 

eddy-resolving model of the Gulf Stream Extension area, J. Phys. Oceanogr., 23, 925-953. 

Schroter, J., and C. Wunsch, 1986: Solution of nonlinear finite difference ocean models by op- 

timization methods with sensitivity and observational strategy analysis, J. Phys. Oceanogr., 

16, 1855-1874. 

Seller, U., 1993: Estimation of open boundary conditions with the adjoint method, J. Geophys. 

Res., 98, 22855-22870. 

Sheinbaum, J., and D. L. T. Anderson, 1990: Variational assimilation of XBT data, part I, J. 

Phys. Oceanogr., 20, 672-688. 

Siedler, G., J. Church and J. Gould, 2001:   Ocean Circulation and Climate:  Observing and 

Modelling the Global Ocean, Academic Press, 750 pp. 

Spall, M. A., 1990: Circulation in the Canary Basin: A model/data analysis, J. Geophys. Res., 

95, 9611-9628. 

Spall, M. A., 1995: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts, 

J. Geophys. Res., 100, 2543-2557. 

Spall, M. A., R. A. Weller and P. W. Furey, 2000: Modehng the three-dimensional upper ocean 

heat budget and subduction rate during the Subduction Experiment, J.- Phys. Oceanogr., 

30, 26151-26166. 

Speer, K., and E. Tziperman, 1992:  Rates of water mass formation in the North Atlantic 

Ocean, J. Phys. Oceanogr., 22, 93-104. 

Stammer,  D.,   1997:    Global characteristics of ocean variabihty estimated from regional 

196 



TOPEX/Poseidon altimeter measurements, J. Phys. Oceanogr., 27, 1743-1769. 

Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. N. 

Hill and J. Marshall, 2002: The global ocean circulation during 1992-1997, estimated from 

ocean observations and a general circulation model, J. Geophys. Res., 107 (C9), 3118. 

Stammer, D., C. Wunsch and R. Ponte, 2000: De-aliasing of global high frequency barotropic 

motions in altimeter observations, Geophys. Res. Letters, 27, 1175-1178. 

Stevens, D. P., 1991:  The open boundary condition in the United Kingdom fine-resolution 

Antarctic model, J. Phys. Oceanogr., 21, 1494-1499. 

Stommel, H., 1979: Determination of water mass properties of water pumped down from the 

Ekman layer to the geostrophic flow below, Proc. Natl. Acad. ScL, 76, 3051-3055. 

Strang, G., 1996: Introduction to Applied Mathematics, Harcourt Brace Jovanovich, 414 pp. 

Sundermeyer, M. A., and J. F. Price, 1998: Lateral mixing and the North Atlantic Tracer 

Release Experiment: Observations and numerical simulations of Lagrangian particles and a 

passive tracer, J. Geophys. Res., 103 (CIO), 21481-21497. 

Tai, C. K., and J. Kuhn, 1995:   Orbit and tide error reduction for the first 2 years of 

TOPEX/POSEIDON, J. Geophys. Res., 100 (C12), 25353-25363. 

Talagrand, O., 1997: Assimilation of observations: An introduction, J. Met. Sac. Jpn., 75, 

191-209. 

Tanguay, M., P. Bartello and P. Gauthier, 1995: Four-dimensional data assimilation with a 

wide range of scales, Tellus, 47A, 974-997. 

Tarantola, A., 1987: Inverse Problem Theory. Methods for Data Fitting and Model Parameter 

Estimation, Elsevier, 232 pp. 

Tennekes, H., 1973: The logarithmic wind profile, J. Atmos. Sci., 30, 234-238. 

Thacker, W. C., 1989: The role of the Hessian matrix in fitting models to measurements, J. 

Geophys. Res., 94, 6177-6196. 

Thacker, W. C., and R. B. Long, 1988:   Fitting dynamics to data, J. Geophys. Res., 93, 

1227-1240. 

Tziperman, E., and W. C. Thacker, 1989: An optimal-control/adjoint-equations approach to 

studying the oceanic general circulation, J. Phys. Oceanogr., 19, 1471-1485. 

Van Trees, H. L., 1968: Detection, Estimation, and Modulation Theory. Part I., J. Wiley, New 

York, 437 pp. 

197 



Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the 

ocean, Tellus, 34, 187-195. 

Welander, 2000: The ideal fluid thermocline, J. Phys. Oceanogr., 30, 67-89. 

Weller, R. A., 2003:  Subduction, in Aha Huliko'a Proceedings of the University of Hawai'i, 

edited by P. MuUer, and D. Henderson, pp. 171-176. 

Weller, R. A., P. W. Furey, M. A. Spall and R. E. Davis, 2004: The large-scale context for 

oceanic subduction in the Northeast Atlantic, Deep-Sea Res., In press. 

Williams, R. G., J. Marshall and G. Nurser, 1995:   Does Stommel's mixed layer "demon" 

work?, J. Phys. Oceanogr., 25, 3089-3102. 

WOCE Synthesis and Modelling Working Group, 1997: WOCE Analysis, Interpretation, Mod- 

elling and Synthesis (AIMS) Strategy, World Ocean Circulation Experiment, Tech. rep. 

Woods, J. D., 1985:  The physics of thermocline ventilation, in Coupled Ocean-Atmosphere 

Models, edited by J. C. J. Nihoul, pp. 543-590. 

Wunsch, C., 1996:   The Ocean Circulation Inverse Problem, p. 437, Cambridge University 

Press, New York. 

Wunsch, C, 1997: The vertical partition of horizontal kinetic energy, J. Phys. Oceanogr., 27, 

1770-1793. 

Wunsch, C, and A. E. GiU, 1976: Observations of equatorially trapped waves in Pacific sea 

level variations, Deep-Sea Res., 23, 371-390. 

Wunsch, C, and D. Stammer, 1998:  Satellite altimetry, the marine geoid, and the oceanic 

general circulation, Annu. Rev. Earth Planet Set, 26, 219-53. 

Wiist, G., 1935: Schichtung und zirkulation des Atlantischen Ozeans. Die stratosphare., in 

Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- 

und Vermessungsschiff "Meteor" 1925-1927 (reprinted as "The Stratosphere of the Atlantic 

Ocean", edited by W. J. Emery, pp. 1-180. 

Yu, L., and P. Malanotte-Rizzoli, 1996: Analysis of the North Atlantic climatologies using a 

combined OGCM/adjoint approach, J. Mar. Res., 54, 867-913. 

Zang, X., and C. Wunsch, 2001: Spectral description of low-frequency oceanic variability, J. 

Phys. Oceanogr., 31, 3073-3095. 

Zhang, K. Q., and J. Marotzke, 1999: The importance of open-boundary estimation for an 

Indian Ocean GCM-Data synthesis, J. Mar. Res., 57, 305-334. 

198 



50272-101 

REPORT DOCUMENTATION 
PAGE 

I.REPOFTTNO. 

MIT/WHOI 2004-05 
3. Recipient's Accession No. 

4. Title and Subtitle 

Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean 

5. Report Date 
June 2004 

7. Authors) 
Geoffrey Gebbie 

8. Performing Organization Rept No. 

9. Performing Organization Name and Address 

MITAVHOI Joint Program in Oceanography/Applied Ocean Science & Engineering 

10. ProjectrrasltfWork Unit No. 

MITAVHOI   2004-05 
11. Contract(C) or Grant(G) No. 

(C) 

(G) 

12. Sponsoring Organization Name and Address 

Massachusetts Institute of Technology 
13. Type of Report & Period Covered 

Ph.D. Thesis 

14. 

15. Supplementary Notes 

This thesis should be cited as: Geoffrey Gebbie, 2004. Subduction in an Eddy-Resolving State Estimate of the Northeast Atiantic 

Ocean. Ph.D. Thesis. MITAVHOI, 2004-05. 

16. Abstract (Limit: 200 words) 

Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjomt model is used to combme a 

regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a 

synthesis of a variety of in-situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MIT 
General Circulation Model. The adjoint method is successful because the Northeast Atiantic Ocean is only weakly nonlinear. 

The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of 

eddy subduction for the eastern subtropical gyre of the North Atiantic are larger than previously calculated from parameterizations 
in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. 
Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and 
the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in 
climate models would lead to an accimiulation of error in the structure of the main thermocline, even in the relatively-quiescent 

eastern subtropical gyre. 

17. Document Analysis     a. Descriptors 

Water-Mass Transformation 
Data Assimilation 
Eddy 

b. Identifiers/Open-Ended Terms 

c COSATI Reld/Group 

18. Availability Statement 

Approved for publication; distribution unlimited. 

19. Security Class (This Report) 

UNCLASSIFIED 
20. Security Class (This Page) 

21.No. of Pages 

198 
22. Price 

(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77) 
(Formerly NTIS-35) 
Department of Commerce 


